Promet - Traffic & Transportation Journal
Pioneering the future of mobility
Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.
Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.
Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.
Open Access
We truly believe in knowledge without boundaries!
Journal's metrics
WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)
Latest Issue
Browse through the selection of our newest research
Yubin ZHENG, Cheng CHENG, Yong ZHANG, Lingyi WANG, Qixuan LI, Hailin ZHANG
Vehicle turn-in rate is a critical and widely adopted input for expressway rest area design and operation. With the implementation of expressway ETC gantries, the ERA turn-in rate can be further estimated by measuring the travel speed distribution via ETC gantry data. This paper proposed an adaptive density peak clustering Gaussian mixture model (ADPC-GMM) for ERA turn-in rate estimation. The ADPC algorithm is applied to generate the GMM’s inputs accommodating to the traffic characteristic of ERA expressway segments and GMM would further provide the turn-in rate estimation results. To validate the model precision, the turn-in rate data of four selected ERAs in Sichuan, China, as well as the ETC gantry data of their corresponding expressway sections are obtained. According to the estimation results, the MAE and RMSE are 0.0228 and 0.0267 for the passenger car scenario and 0.0264 and 0.0356 for the commercial truck scenario, respectively. These results are also at the lowest level compared with the results acquired from ordinary GMM, K-Means and DBSCAN algorithms. The proposed method has good applicability for vehicle turn-in rate estimation and can be deployed at different ERAs, especially those ERAs without traffic monitoring.
2024 (Vol 36), Issue 5
Mesut ULU, Yusuf Sait TÜRKAN
Traffic accidents are one of the main causes of fatalities and serious injuries among both adults and children worldwide. Due to the ongoing significant socio-economic losses brought on by traffic accidents, precise estimation of the risk of accidents is crucial to reducing subsequent incidents. For this reason, a significant proportion of the studies in the literature include studies on estimating the risk, severity, frequency, location and duration of accidents. The objective of this article is to identify patterns, gaps and future research trends in traffic accident prediction studies conducted between 2003 and 2023. A bibliometric study is carried out to investigate the links and trends in traffic accident and forecasting studies, with a focus on identifying dominant narratives and networks within the academic community. In the keyword search, 1,566 articles were analysed using the Web of Science main collection and bibliometric indicators such as annual publications and citations, top 10, authors, journals, institutions, most cited articles, and a citation analysis of the articles was presented. The results obtained suggest that the discernible patterns identified in this bibliometric analysis of traffic accidents and their predictions will find a much broader application in new paradigms that are ready to catalyse transformative advances in this field, such as artificial intelligence, machine learning and Industry 4.0 applications.
2024 (Vol 36), Issue 5
Minghao LI, Yi ZHAO, Jianxiao MA, Yuxin CHEN, Shuo HUAI
This study investigates the overtaking lane-changing (OLC) behaviour in expressway interchange weaving areas, aiming to analyse these behaviours’ causes and potential impacts. Field data are utilised to analyse the statistical characteristics of lane-changing points and spatio-temporal utilisation in weaving areas. A modified NS model, which considers the distribution pattern of vehicle speeds, and a rigid lane-changing rule based on Gaussian distribution are proposed. Additionally, a cellular automaton simulation model is constructed to quantify the influence of OLC behaviour on traffic efficiency and spatio-temporal utilisation based on simulated data. The findings indicate that the imbalanced distribution of lane-changing points and spatio-temporal utilisation in weaving segments, caused by rigid lane-changing behaviour, is an objective factor that triggers OLC behaviour. When the traffic volume in weaving areas ranges from 500 to 1,100 pcu/5 min and the proportion of OLC behaviour is between 0.35 and 0.7, the behaviour will significantly enhance the average vehicle speeds of the outermost lane of the main road and normal rigid lane-changing (NRLC) vehicles, with increases of up to 48% and 51%, respectively. Moreover, OLC behaviour also improves the balance of spatio-temporal utilisation in weaving areas and reduces the average spatio-temporal utilisation. This study clarifies the positive impact of OLC behaviour on expressway interchange weaving areas and provides new research ideas for enhancing the efficiency of these areas.
2024 (Vol 36), Issue 5
Qing LIU, Qiwei QIAN
Airport clusters are of great significance to the sustainable development of the civil aviation transportation industry. The study utilises common frontier and super-efficiency DEA methods to assess the efficiency of China’s six major airport groups. It then employs the Malmquist index method to analyse changes in airport productivity. The results highlight regional disparities in airport efficiency. The East China Airport Group and the Southwest Airport Group consistently demonstrate excellent efficiency values, while the North China Airport Group and the Northeast Airport Group have significant room for improvement. Most airports within the groups operate at low and ineffective levels, with efficiency initially increasing and then decreasing. Moreover, the technology gap ratio (TGR) for each airport group somewhat shows a downward trend. The Malmquist index indicates that the overall factor productivity of each airport has generally remained stable, with efficiency growth primarily dependent on scale efficiency. On average, technical efficiency has increased by 1.5%. However, in terms of technological changes, most airports have experienced technological regression, indicating insufficient focus on technological improvement. Therefore, it is crucial to prioritise technological innovation and enhance management efficiency to achieve efficiency improvements in airport clusters. It is necessary to formulate strategies accurately based on the specific conditions of different regions, promote coordinated development, foster regional exchanges and cooperation, address regional disparities, ensure sustainable development of China’s airport clusters, and establish a world-class airport cluster.
2024 (Vol 36), Issue 5
Luka DEDIĆ, Miroslav VUJIĆ
In urban networks, periodic peak traffic congestion often occurs during the day, namely in the morning and afternoon hours. Due to spatial constraints and the inability to increase capacity through physical road expansion, modern traffic management increasingly relies on Intelligent Transport Systems (ITS) solutions. One such solution is the integration of automatic licence plate recognition, an expert system and microsimulation tools aimed at optimising the network performance of signalised intersections within a network. Based on real-time and historical data on individual vehicle trajectories, the system predicts the route of each vehicle through the observed segment of the traffic network, determines the network load and proposes optimal signal plans. This paper provides an overview of conducted research related to the optimisation of signal plans utilising expert systems. Mathematical models for capacity and load determination, as well as computational intelligence-based systems used for signalised intersection management strategies, are described. Finally, the paper proposes a basic framework and guidelines related to the suggested system, highlighting open questions and potential challenges in its development.
2024 (Vol 36), Issue 5
Xuelong ZHENG, Xuemei CHEN, Yaohan JIA
Vehicle trajectory prediction plays a critical role before the decision planning of autonomous vehicles in complex and dynamic traffic environments. It helps autonomous vehicles better understand the traffic environments and ensure safe and efficient tasks. In this study, a hierarchical trajectory prediction method is proposed. The graph attention network (GAT) model was selected to estimate the interactions of surrounding vehicles. Considering the behaviour of surrounding agents, the future trajectory of the target vehicle is predicted based on the long short-term memory network (LSTM). The model has been validated in real traffic environments. By comparing the accuracy and real-time performance of target vehicle trajectory prediction, the proposed model is superior to the traditional single trajectory prediction model. The results of this study will provide new modelling ideas and a theoretical basis for the vehicle trajectory prediction in urban traffic environments.
2024 (Vol 36), Issue 5
Special Issue Call
We invite you to contribute to our special issue
Innovation and New Technologies in Transport and Logistics
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD; Dario Babić, PhD; Marko Ševrović, PhD.
Transport and logistics, essential components of today's interconnected and globalized world, serve as the backbone of economies worldwide. They facilitate the seamless movement of goods and people, driving trade, commerce, and societal development. However, amidst their significance, contemporary transport and logistics sectors face multifaceted challenges that demand innovative solutions.
Ensuring accessibility of transportation services in both urban and rural areas remains a pressing concern. Additionally, environmental sustainability and the imperative for eco-friendly transportation and logistics solutions are paramount. Crafting responsive transport services that adapt to evolving demands and integrating diverse transport modes within the same infrastructure poses significant challenges. The precision and reliability of transportation providers are also critical factors in meeting modern logistics demands.
Stay Focused
Read about the latest news in the T&T landscape
10th International Ergonomics Conference - ERGONOMICS 2024
It is with great pleasure that we invite you to participate in the 10th International Ergonomics Conference - ERGONOMICS 2024, which will be held from December 5th to 6th, 2024 in Zagreb, Hotel International.
Read moreWorkshop - improving the publication process and developing the support system for the journal
Editorial Board meeting of the Promet – Traffic&Transportation journal took place on May 16th, 2023 as a workshop aimed at improving the publication process and developing the support system for the journal under the leadership of the Editor-in-Chief, Assoc. Prof. Ivona Bajor, PhD.
Read moreCooperation between Faculty of Transportation Engineering and Vehicle Engineering, Budapest and journal Promet – Traffic & Transportation
On March 9, 2023, Editor-in-Chief Ivona Bajor and Assistant Editor-in-Chief, Luka Novačko met with long-term partners of the scientific journal Promet – Traffic & Transportation, representatives of the Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Vice-Dean for science and international cooperation Dr. Adam Torok and Dr. Tibor Šipoš.
Read moreFaculty of Logistics signed a co-publishing agreement
On December 21, 2022, the Faculty of Transport and Traffic Sciences, as the publisher of the scientific journal Promet-Traffic&Transportation and the University of Maribor, Faculty of Logistics signed a co-publishing agreement
Read moreSuradnja vezana uz izdavanje međunarodnog časopisa Promet – Traffic&Transportation
Prošlog tjedna održao se sastanak u Celju kojem su prisustvovali glavna urednica časopisa Promet – Traffic and Transportation, doc. dr. sc. Ivona Bajor i zamjenik glavne urednice izv. prof. dr. sc. Luka Novačko sa predstavnicima Univerze v Mariboru, Fakulteta za logistiko, dekanicom Majom Fošner i prodekanom za financije Andrejem Lisecom.
Read moreEditor's Choice Papers
Explore the selection of scientific papers handpicked by the editor
Ying Chen, Zhigang Du, Zehao Jiang, Congjian Liu, Xuefeng Chen
For urban extra-long underwater tunnels, the obstacle space formed by the tunnel walls on both sides has an impact on the driver's driving. The aim of this study is to investigate the shy away characteristics of drivers in urban extra-long underwater tunnels. Using trajectory offset and speed data obtained from real vehicle tests, the driving behaviour at different lanes of an urban extra-long underwater tunnel was investigated, and a theory of shy away effects and indicators of sidewall shy away deviation for quantitative analysis were proposed. The results show that the left-hand lane has the largest offset and driving speed from the sidewall compared to the other two lanes. In the centre lane there is a large fluctuation in the amount of deflection per 50 seconds of driving, increasing the risk of two-lane collisions. When the lateral clearances are increased from 0.5 m to 2.19 m on the left and 1.29 m on the right, the safety needs of drivers can be better met. The results of this study have implications for improving traffic safety in urban extra-long underwater tunnels and for the improvement of tunnel traffic safety facilities.
2023 (Vol 35), Issue 4
Snežana Tadić, Mladen Krstić, Milovan Kovač, Nikolina Brnjac
The negative effects of goods flows realisation are most visible in urban areas as the places of the greatest concentration of economic and social activities. The main goals of this article were to identify the applicable Industry 4.0 technologies for performing various city logistics (CL) operations, establish smart sustainable CL solutions (SSCL) and rank them in order to identify those which will serve as the base points for future plans and strategies for the development of smart cities. This kind of problem requires involvement of multiple stakeholders with their opposing goals and interests, and thus multiple criteria. For solving it, this article proposed a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment. The results of the model application imply that the potentially best SSCL solution is based on the combination of the concepts of micro-consolidation centres and autonomous vehicles with the support of artificial intelligence and Internet of Things technologies. The main contributions of the article are the definition of original SSCLs, the creation of a framework and definition of criteria for their evaluation and the development of a novel hybrid MCDM model.
2022 (Vol 34), Issue 5
Junzhuo Li, Wenyong Li, Guan Lian
Data-driven forecasting methods have the problems of complex calculations, poor portability and need a large amount of training data, which limits the application of data-driven methods in small cities. This paper proposes a traffic flow forecasting method using a Nonlinear AutoRegressive model with eXogenous variables (NARX model), which uses a dynamic neural network Focused Time-Delay Neural Network (FTDNN) with a Tapped Delay Line (TDL) structure as a nonlinear function. The TDL structure enables the FTDNN to have short-term memory capabilities. At the same time, before the data is input into the FTDNN, the use of trend decomposition or differential calculation on the traffic data sequence can make the NARX model maintain long-term predictive capabilities. Compared with common nonlinear models, the FTDNN has structural advantages. It uses a simple TDL structure without the memory mechanism and the gated structure, which can reduce the parameters of the model and reduce the scale of data. Through the four-day data of Guilin City, the traffic volume forecast for five minutes is verified, and the performance of the NARX model is better than that of the SARIMA model and the Holt-Winters model.
2022 (Vol 34), Issue 6
Emma Strömblad, Lena Winslott Hiselius, Lena Smidfelt Rosqvist, Helena Svensson
In search for measures to reduce greenhouse gas emissions from transport, insights into the characteristics of all sorts of trips and specifically trips by car are needed. This paper focuses on everyday leisure trips for social and recreational purposes. Travel behaviour for these purposes is analysed considering individual and household factors as well as properties of the trip, based on Swedish national travel survey data. The analysis reveals that everyday leisure trips are often of joint character and that the average distance travelled per person and day increases with, for example, income, cohabitation, children in the household and residence in rural areas. The result also shows that the studied characteristics vary between studied trip purposes, influencing the sustainability potential of a reduction in car use and suggested measures. For instance, the largest share of passenger mileage comes from social trips, whereas trips for exercise and outdoor life have the largest share of car trips below 5 km. Several characteristics indicate difficulties in transferring trips by car to, for example, bicycle or public transport due to convenience, economy, start times, company etc. The study indicates that there is a need to take a broader view of the effective potential.
2022 (Vol 34), Issue 4
Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović
The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.
2020 (Vol 32), Issue 6
Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu
This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.
2021 (Vol 33), Issue 2