Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

Fluid Models in ihe Traffic Flow Theory

Authors:Sanja Marušić

Abstract

This paper presents a survey of results concerning continuum(fluid) models in the the01y of traffic flow. We begin withthe basic LWR model from 1955-56 and describe the benefitsand deficiencies of that model. Ajte1wards we present somenew models developed over the peliod from 1971 (Payne) until1999 (Aw and Rascle) in attempt of correcting the deficienciesof classical L WR model

Keywords:

References

  1. R. Ansorge, What does the entropy solution mean in the

    traffic flow theory?, Transpn Res.B, Vol24, No 2 (1990),

    -143.

    A. Aw, M. Rascle, Resurrection of second order models of

    traffic flow, SIAM J. Appl. Math., Vol 60, No.3 (2000),

    -938.

    J.H. Bick, G.F. Newell, A continuum model for two-directional

    traffic flow, Quart. Appl. Math., 18 (1961),

    -204.

    C.F. Daganzo, Fundamentals of Transportation and

    Traffic Operations, Pergamon, Amsterdam, 1996.

    C.F. Daganzo, Requiem for second order fluid approximation

    to traffic flow, Transpn. Res. B, Vol 29, No 4

    (1995), 277-286.

    C.F. Daganzo, A continuum themy of traffic dynamics

    for freeways with special lanes, Transpn Res. B, Vol 31,

    No 2 (1997), 83-102.

    N.D. Fowkes, J.J. Mahony, An Introduction to Mathematical

    Modelling, Wiley, New York, 1994.

    R. Haberman, Mechanical Vibrations, Population Dynamics

    and Traffic Flow, SIAM, Philadelphia, 1998.

    D. Helbing, Verkehrsynamik, Springer Verlag, Berlin,

    H. Holden, N.H. Risebro, A mathematical model of

    traffic flow on a network of unidirectional roads, SIAM J.

    Math. Anal., Vol26, No 4 (1995), 999-1017.

    E. Godlewski, P .A. Raviart, Hyperbolic systems of conseJvation

    laws, Ellipses, Paris, 1991.

    C.J. Leo, R.L. Pretty, Numerical simulation of macroscopic

    continuum traffic models, Transpn Res. B, Vol

    , No 3 (1992), 207-220.

    R.J. LeVeque, Numelical Methods for ConseJVation

    Laws, Birkhauser, Basel, 1992.

    M.J. Lighthill, J.B. Whitham, On kinematic waves. I:

    Flow movement in long rivers. II· A theory of traffic flow

    on long crowded roads, Proc. Royal Soc. Edinburgh. A,

    (1955), 281-345.

    P.G. Michalopoulos, D.E. Beskos, J.K. Lin, Analysis of

    interrupted traffic flow by finite difference methods.

    Transpn Res. B, 18B (1984), 409-421.

    P.G. Michalopulos, P.Yi, A.S. Lyrintzis, Continuum

    modelling of traffic dynamics for congested freeways,

    Transpn Rs. B, Vol 27, No 4 (1993), 315-332.

    C.S. Morawetz, Nonlinear Waves and Shocks, Springer,

    Berlin, 1981.

    H.J. Payne, Models of freeway traffic and control, Simulation

    Councils Pros. Series: Mathematical Models of

    Public Systems, Vol 1, No 1 (1971), ed. G. A Bakey,

    -61.

    I. Prigorgine, F.C. Andrews, A. Boltzmann-like approach

    for traffic flow, Operations Research, 8 (1960),

    -797.

    P.I. Richards, Shock waves on the highway, Operations

    Research, 4 (1956), 42-51.

    A.J. Roberts, One-Dimensional Introduction to Continuum

    Mechanics, World Scientific, Singapore, 1994.

    K.K. Sanwal, K.Petty, J.Walrand,An extended macroscopic

    modelfortrafficflow, Transpn Res. B, Vol30, No

    (1996), 1-9.

    H. M. Zhang, A theory of nonequilibrium traffic flow,

    Transpn Res. B, Vol 32, No 7 (1998), 485-498.

    X. Zhang, F.J. Jarret, Stability analysis of the classical

    car-following model, Transpn Res. B, Vol 31, No 6

    (1997), 441-462.

Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal