Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
-
LICENSE
Copyright (c) 2024 Baozhen Yao, Ping Hu, Mingheng Zhang, Xiaomei Tian

Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

Authors:Baozhen Yao, Ping Hu, Mingheng Zhang, Xiaomei Tian

Abstract

This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.

Keywords:Seafood Product Delivery Routing Problem, Multi-Depot Open Vehicle Routing Problem, Ant Colony Optimization, Adaptive Strategy, Crossover Operation

References

  1. Jaffry, S., Pickering, H., Ghulam, Y., Whitmarsh, D., Wattage, P.: (2004); Consumer choices for quality and sustainability labelled seafood products in the UK. Food Policy 29(3):215–228

    Guillotreau, P., Peridy, N.: (2000); Trade barriers and European imports of seafood products: a quantitative assessment. Marine Policy, 24(5):431-437

    Salari, M., Toth, P., Tramontani, A.: (2010); An ILP improvement procedure for the Open Vehicle Routing Problem. Computers & Operations Research, 37(12):2106-2120.

    Brandao, J.: (2004); A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 157(3):552-564

    Renaud, J., Laporte, G., Boctor, F.F.: (1996); A Tabu Search Heuristic for the Multi-Depot Vehicle Routing Problem. Computers & Operations Research, 23(3):229-235

    Yu, B., Yang, Z.Z., Xie, J.X.: (2011); A parallel improved ant colony optimization for multi-depot vehicle routing problem. Journal of the Operational Research Society, 62:183-188

    Chen, G., Govindan, K., and Yang, Z.Z.: (2013); Managing truck arrivals with time windows to alleviate gate congestion at container terminals, International Journal of Production Economics, 141(1):179-188

    Chen, G., Yang, Z.Z.: (2010); Optimizing Time Windows for Managing Arrivals of Export Container in Chinese Container Terminals, Maritime Economics & Logistics, 12(1):111-126

    Yao, B.Z., Hu, P., Lu, X.H., Gao, J.J. Zhang, M.H.: (2013); Transit network design based on travel time reliability. Transportation Research Part C, DOI:10.1016/j.trc.2013.12.005(in press).

    Yao B.Z., Hu, P., Zhang, M.H., Wang, S.: (2013); Artificial Bee Colony Algorithm with Scanning Strategy for Periodic Vehicle Routing Problem. SIMULATION: Transactions of the Society for Modeling and Simulation International. 89(6):762-770

    Yao, B.Z., Yang, C.Y., Yao, J.B., Sun, J.: (2010); Tunnel Surrounding Rock Displacement Prediction Using Support Vector Machine. International Journal of Computational Intelligence Systems, 3(6): 843-852

    Yu, B., Yang, Z.Z.: (2011); An ant colony optimization model: The period vehicle routing problem with time windows. Transportation Research Part E, 47(2):166-181

    Yu, B., Lam, W.H.K., Lam, T.M.: (2011); Bus Arrival Time Prediction at Bus Stop with Multiple Routes. Transportation Research Part C, 19(6):1157-1170

    Yu, B., Yang, Z.Z., LI, S.: (2012); Real-Time Partway Deadheading Strategy Based on Transit Service Reliability Assessment. Transportation Research Part A, 46(8):1265-1279

    Yue, M., Zhang, Y.S., Tang, F.Y.: (2013); Path following control of a two-wheeled surveillance vehicle based on sliding mode technology. Transaction of the Institute of Measurement and Control, 35(2): 212-218

    Repoussisa, P.P., Tarantilisa, C.D., Bräysyb, O., Ioannoua, G.: (2010); A hybrid evolution strategy for the open vehicle routing problem. Computers & Operations Research, 37(3):443-455

    Mirabi, M., Fatemi Ghomib, S.M.T., Jolaic, F.: (2010); Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robotics and Computer-Integrated Manufacturing, 26(6):564-569

    Ho, W., Ho, G.T.S., Ji, P., Lau, H.C.W.: (2008); A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4):548-557

    Dorigo, M., Maniezzo, V., Colorni, A.: (1996); The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Mans, and Cybernetics 1 (26), 29-41

    Gambardella, L., Taillard, E., Dorigo, M.: (1997); Ant Colonies for the QAP, Technical Report 97-4, IDSIA, Lugano, Switzerland

    Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: (1994): Ant System for Job-Shop Scheduling, Jorbel -Belgian Journal of Operations Research Statistics and Computer Science 34 (1), 39–53

    Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: (1997); Ant-Based Load Balancing in Telecommunications Networks, Adaptive Behavior 5 (2), 169-207

    Yu, B., Yang, Z.Z., Yao, B.Z.: (2009); An Improved Ant Colony Optimization for Vehicle Routing Problem. European Journal of Operational Research, 196(1):171-176

    Clarke, G., Wright, J.W.: (1964); Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations research, 12(4):568-581

    Croes, G.A.: 1958, A method for solving traveling salesman problems. Operations Research, 6: 791–812.

    Bullnheimer, B., Hartl, R.F., Strauss, C.: (1997); Applying the Ant System to the Vehicle Routing Problem, in: Second Metaheuristics International Conference, MIC’97, Sophia-Antipolis, France.

    Bullnheimer, B., Hartl, R.F., Strauss, C.: (1999); An Improved Ant System Algorithm for the Vehicle Routing Problem. Annals of Operations Research, 89, 319–28

    Bell, J.E., McMullen, P.R.: (2004); Ant Colony Optimization Techniques for the Vehicle Routing Problem. Advanced Engineering Informatics 1;8, 41-48

    Chen, C.H., Ting, C.J.: (2006); An Improved Ant Colony System Algorithm For The Vehicle Routing Problem. Journal of the Chinese Institute of Industrial Engineers, 23(2):115-126

    Stützle, T. and Hoos, H.H.: (2000); MAX–MIN ant system, Future Generation Computer Systems, 16(8): 889-914

    Christofides, N. and Eilon, S.: (1969); An algorithm for the vehicle dispatching problem. Journal of the Operational Research Society, 20: 309–318

    Gillett, B.E., Johnson, J.G.: (1976); Multi-terminal vehicle-dispatch algorithm. Omega, 4(6):711-718

    Chao, M.I., Golden, B.L. and Wasil, E.A.: (1993). A new heuristic for the multi-depot vehicle routing problem that improves upon best known solutions. American Journal of Mathematical and Management Sciences, 13(3-4):371-406

    Cordeau, J.F., Gendreau, M. and Laporte, G.: (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30: 105–119

Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal