Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

Promet - Traffic & Transportation Journal

Pioneering the future of mobility

Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.

Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.

Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.

Open Access

We truly believe in knowledge without boundaries!

The Journal is Indexed

Journal's metrics

WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)

Latest Issue

Browse through the selection of our newest research

Meiling HE, Guangrong MENG, Xiaohui WU, Xun HAN, Jiangyang FAN

With the acceleration of urbanisation and the rapid increase in road traffic volume, the scientific prediction of traffic accidents has become crucial for improving road safety and enhancing traffic efficiency. However, traffic accident prediction is a complex and multifaceted problem that requires the comprehensive consideration of multiple factors, including people, vehicles, roads and the environment. This paper provides a detailed analysis of traffic accident prediction based on multi-source data. By thoroughly considering data sources, data processing and prediction methods, this paper introduces the various aspects of traffic accident prediction from different perspectives. It helps readers understand the characteristics of different data and methods, the process of accident prediction and the key technologies involved. At the end of the paper, the main challenges and future directions in road crash prediction research are summarised. For example, the lack of efficient data sharing between different departments and fields poses significant challenges to the integration of multi-source data. In the future, combining deep learning models with time-sensitive data, such as social media and vehicle network data, could effectively improve the accuracy of real-time accident prediction.

2025 (Vol 37), Issue 2

Patricija BAJEC, Eva PODOVŠOVNIK

Crowdshipping has garnered increasing interest due to its potential benefits for various stakeholders. However, despite challenges in attracting crowdshippers, limited research explores their preferences, including socio-demographic factors and the practical challenges providers face when testing or implementing crowdshipping. This study aims to identify key factors influencing willingness-to-work (WTW) among potential crowdshippers, both in general and within business-to-business (B2B) and business-to-customer (B2C) contexts. Based on the literature review, this paper identifies 19 barriers influencing WTW and develops 22 corresponding enablers to address these barriers. Using a survey of 432 participants from Slovenia, the overall significance of these factors without differentiating business models was first assessed. Then, chi-squared automatic interaction detection analysis was applied to predict WTW in B2B and B2C contexts, identifying variations across these models. The disclosure of a mobile number emerged as the most influential predictor in both settings. Other notable differences in enablers and barriers were observed depending on the business model. These findings emphasise the need to consider business models in future preference analyses and provide a foundation for targeted recruitment strategies for crowdshippers.

2025 (Vol 37), Issue 2

Adisa MEDIĆ, Amel KOSOVAC, Ermin MUHAREMOVIĆ, Muhamed BEGOVIĆ

Machine learning (ML) is a crucial component of artificial intelligence that has recently attracted attention for its application in logistics. ML algorithms are used on large datasets. They create logic correlations among given data and provide predictions of specific values. This research paper aims to conduct a systematic literature review to showcase the potential applications of machine learning in urban logistics systems, specifically focusing on enhancing satisfaction for postal logistics operators and their customers. The authors used various research publication databases in this context (Web of Science, Scopus, Google Scholar etc). The analysis of different models provides insights into diverse aspects, such as predicting product prices and types of cargo, evaluating user satisfaction, forecasting user departures, assessing optimal geographical locations for implementing postal centres, predicting purchase times before online orders, estimating delivery times in the last phase of the logistics chain and more. The significance of this research is highlighted through the identification of shortcomings in existing literature, offering guidelines for future research in developing new machine learning model for optimal operator selection. This model aims to achieve improvements in both customer and operator satisfaction simultaneously.

2025 (Vol 37), Issue 2

Xiaoyu CAI, Zimu LI, Wufeng QIAO, Xiling CHENG, Bo PENG, Dong ZHANG

To accurately prevent and warn of traffic accidents, this article proposes a method for predicting urban road traffic safety risks based on vehicle driving behaviour data and information entropy theory. This method uses data from radar video-integrated sensors to calibrate the thresholds for identifying unsafe driving behaviour, introduces recognition principles and algorithms, and analyses spatiotemporal distribution patterns. By incorporating entropy theory, an evaluation system with traffic safety entropy as the primary indicator and the unsafe driving behaviour rate as the secondary indicator is established. Clustering algorithms determine the classification number and threshold of traffic safety entropy, constructing a tunnel traffic safety risk assessment model, which is validated with road accident data. Using 13 days of data from the left lane of Qingdao Jiaozhou Bay Tunnel, the model divides traffic operation risk into high and low categories based on K-means clustering results of accident and safety entropy data. The study finds that when the safety entropy classification threshold is 0.0507, the classification accuracy is the highest at 92%. These results provide technical support for identifying road traffic safety risk points and preventing accidents.

2025 (Vol 37), Issue 2

Wei ZHANG, Chuang ZHU, Yunchao QU, Guanhua LIU, Der-Horng LEE

With the ongoing urbanisation, the subway has become a vital component of modern cities, catering to the escalating demands of a mobile population. However, the increasing complexity of passenger flows within subway stations poses challenges to operations management. To optimise subway operations and enhance safety, researchers focus on extracting and analysing pedestrian trajectories within subway stations. Traditional trajectory extraction methods face limitations due to manual feature design and multi-stage processing. Leveraging advancements in deep learning, this paper integrates M-DeepSORT with YOLOv5 and proposes a feature association matching approach that addresses trajectory drift issues through simultaneous consideration of motion and appearance matching. The confidence-based (CB) Kalman filtering method is proposed to address the issue of random noise in pedestrian detection within subway scenes. The introduction of a momentum-based passenger trajectory centre update method reduces jitter, resulting in smoother trajectory extraction. Experimental results affirm the effectiveness of the proposed algorithm in detecting, tracking and statistically analysing subway station corridor passenger flow trajectories, demonstrating robust performance in diverse subway station scenarios.

2025 (Vol 37), Issue 2

Hong JIANG, Jiaxue WANG, Xinhui REN

With the potential for fast, contactless and environmentally friendly delivery, unmanned aerial vehicles (UAVs) have gained increasing attention and application due to their cost-effectiveness and convenient and rapid delivery operations. In future cities, a multi-level airport that supports vertical take-off and landing (VTOL) of UAVs and forming a delivery network is necessary to improve delivery efficiency and provide a competitive advantage. This paper proposes a multi-level airport location-routing problem for UAVs that considers UAV flight energy consumption and operational costs. The goal is to minimise the number of locations and minimise delivery path planning while meeting delivery demands within the service range. Based on the traditional distribution centre site-path problem, the UAV distribution network is constructed to solve the problem of airport location and flight path planning, and the two-layer genetic algorithm is used to solve it. Based on this, the validity of the model and algorithm is verified using the urban area of Tianjin as an example. The experimental results show that the constructed model can be used for UAV airport layout planning, which is applicable to large-scale, multi-aircraft-type and multi-level airport layout planning. Data analysis results indicate that when the location layout of the vertical hub airport is on the edge of the VTOL points, both the flight distance and the total cost of the delivery network relatively increase. Increasing the payload capacity will reduce the number of UAV operations, but the total cost shows a decreasing-then-increasing trend. This study can provide a theoretical basis for the selection of airport sites and UAV types in future UAV urban delivery networks.

2025 (Vol 37), Issue 2

See All Articles

Current Special Issue Call

Rethinking the European Railway System

Guest Editors: Armando Carrillo Zanuy, PhD; Juan de Dios Sanz Bobi, PhD

Editor: Borna Abramović, PhD

Deadline: September 10, 2025

The European railway system has played a pivotal role in shaping the continent’s economic integration, cultural exchange, and sustainable mobility solutions. However, this system now faces unprecedented challenges, including climate change imperatives, digital transformation, and the need for revitalised cross-border connectivity.

Addressing funding mechanisms and harmonising regulatory and operational standards are equally vital to achieving seamless cross-border mobility. The current lack of coordination among national rail systems creates significant barriers to forming an interconnected seamless European rail network, underscoring the urgency of developing solutions for improved interoperability, technical standardisation, increased safety, passenger experiences, active participation in supply chain management, unified organisation, and aligned policy frameworks.

This call for papers seeks innovative approaches to rethinking European railways' governance, technology, and infrastructure in the context of 21st-century demands. Original research papers and reviews are welcome.

Read more...

IThenticate logo
Clarivate logo
Turn it in logo
Creative Commons Attribution 4.0 logo

Stay Focused

Read about the latest news in the T&T landscape

Editor's Choice Papers

Explore the selection of scientific papers handpicked by the editor

Promet - Traffic&Transportation web page on a laptop.jpg

Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu

This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.

2021 (Vol 33), Issue 2

Snežana Tadić, Mladen Krstić, Milovan Kovač, Nikolina Brnjac

The negative effects of goods flows realisation are most visible in urban areas as the places of the greatest concentration of economic and social activities. The main goals of this article were to identify the applicable Industry 4.0 technologies for performing various city logistics (CL) operations, establish smart sustainable CL solutions (SSCL) and rank them in order to identify those which will serve as the base points for future plans and strategies for the development of smart cities. This kind of problem requires involvement of multiple stakeholders with their opposing goals and interests, and thus multiple criteria. For solving it, this article proposed a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment. The results of the model application imply that the potentially best SSCL solution is based on the combination of the concepts of micro-consolidation centres and autonomous vehicles with the support of artificial intelligence and Internet of Things technologies. The main contributions of the article are the definition of original SSCLs, the creation of a framework and definition of criteria for their evaluation and the development of a novel hybrid MCDM model.

2022 (Vol 34), Issue 5

Ahmed Jaber, Bálint Csonka

The purpose of this research is to investigate the effect of land use, built environment and public transportation facilities’ locations on destinations of bike-sharing trips in an urban setting. Several methods have been applied to determine the relationship between predicting variables and trip destinations, such as ordinary least squares regression, spatial regression and geographically weighted regression. Additionally, a comparison between the proposed models, count models and random forest has been conducted. The data were collected in Budapest, Hungary. It has been found that touristic points of interest, and healthcare and educational points have a positive impact on bike-sharing destinations. Public transportation stops for buses, trains and trams attract bike-sharing users, which has a potential for the bike-and-ride system. Land use has different effects on bike-sharing trip destinations; mostly as a circular shape variation within the urban structure of the city, such as residential, industrial, commercial and educational zones. Other variables, such as road length and water areas, form as constraints to bike-sharing trip destinations. Geographically weighted and spatial regression performs better than count models and random forest. This study helps decision-makers in predicting the origin-destination matrix of bike-sharing trips based on the transportation network and land use.

2023 (Vol 35), Issue 1

Junzhuo Li, Wenyong Li, Guan Lian

Data-driven forecasting methods have the problems of complex calculations, poor portability and need a large amount of training data, which limits the application of data-driven methods in small cities. This paper proposes a traffic flow forecasting method using a Nonlinear AutoRegressive model with eXogenous variables (NARX model), which uses a dynamic neural network Focused Time-Delay Neural Network (FTDNN) with a Tapped Delay Line (TDL) structure as a nonlinear function. The TDL structure enables the FTDNN to have short-term memory capabilities. At the same time, before the data is input into the FTDNN, the use of trend decomposition or differential calculation on the traffic data sequence can make the NARX model maintain long-term predictive capabilities. Compared with common nonlinear models, the FTDNN has structural advantages. It uses a simple TDL structure without the memory mechanism and the gated structure, which can reduce the parameters of the model and reduce the scale of data. Through the four-day data of Guilin City, the traffic volume forecast for five minutes is verified, and the performance of the NARX model is better than that of the SARIMA model and the Holt-Winters model.

2022 (Vol 34), Issue 6

Ying Chen, Zhigang Du, Zehao Jiang, Congjian Liu, Xuefeng Chen

For urban extra-long underwater tunnels, the obstacle space formed by the tunnel walls on both sides has an impact on the driver's driving. The aim of this study is to investigate the shy away characteristics of drivers in urban extra-long underwater tunnels. Using trajectory offset and speed data obtained from real vehicle tests, the driving behaviour at different lanes of an urban extra-long underwater tunnel was investigated, and a theory of shy away effects and indicators of sidewall shy away deviation for quantitative analysis were proposed. The results show that the left-hand lane has the largest offset and driving speed from the sidewall compared to the other two lanes. In the centre lane there is a large fluctuation in the amount of deflection per 50 seconds of driving, increasing the risk of two-lane collisions. When the lateral clearances are increased from 0.5 m to 2.19 m on the left and 1.29 m on the right, the safety needs of drivers can be better met. The results of this study have implications for improving traffic safety in urban extra-long underwater tunnels and for the improvement of tunnel traffic safety facilities.

2023 (Vol 35), Issue 4

Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović

The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.

2020 (Vol 32), Issue 6


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal