Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

Promet - Traffic & Transportation Journal

Pioneering the future of mobility

Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.

Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.

Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.

Open Access

We truly believe in knowledge without boundaries!

The Journal is Indexed

Journal's metrics

WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)

Latest Issue

Browse through the selection of our newest research

Wei LI, Tian’ai LI, Yongying MENG, Xuecai XU, Zhifeng MA

This study intended to explore college students’ cognition and attitudes towards connected and autonomous vehicles (CAVs) in China. A comprehensive questionnaire was designed and distributed in Mainland China, and after collecting and processing the data, Bayesian multivariate analysis was presented to evaluate the six dimensions of cognition, consciousness, safety, privacy, liability, education and acceptance. By analysing each dimension, the results show that gender and status are significant for consciousness, safety, privacy and education, but location plays a significant role in safety and liability. It is found that each dimension reveals a specific thought of college students, and the potential users’ cognition and attitude should be paid more attention to. Some empirical suggestions are presented to enhance the systematic improvement of CAVs and possible ethics issues.

2024 (Vol 36), Issue 5

Meng ZHANG, Hua GUO, Jing-yang LI, Li LI, Feng ZHU

Low temperatures and icing in winter are significant factors that severely affect highway safety and traffic mobility. To enhance the precision and reliability of real-time winter road surface temperature (RST) prediction, a short-term prediction model is developed that harnesses both feature selection and deep learning. Leveraging meteorological data from a mountain highway in Yunnan, China, the key environmental variables affecting road surface temperature were first extracted using a random forest (RF) model for feature selection. These features were then combined with RST data to construct multiple groups of input variable combinations for the prediction model. A short-term prediction model with a 10-minute update frequency was built using a long short-term memory neural network (LSTM), namely RF-LSTM. The best input variable combination and preset parameters for the prediction model were determined through comparative testing with prevalent machine learning models, and the transferability of the prediction model was verified. The results showed that the best input variable combination for the RF-LSTM prediction model was road surface temperature and air temperature. The model recognised that the short-term RST was affected by long and short-term memory characteristics within a two-hour timeframe. When compared to the RF model, backpropagation (BP) neural network model and the standard LSTM model, the proposed model reduces prediction errors by 59.15%, 31.10% and 20.26%, respectively, while the prediction accuracy is 99.13% within an error margin of ±0.5℃. On the verification dataset, the proposed model maintains its time transferability with an average prediction absolute error of 0.0478. In all, the proposed model not only achieves a higher level of precision in real-time RST predictions but also ensures a more consistent and reliable performance under the challenging conditions of high altitude and mountainous terrain, offering enhanced support for traffic safety and road maintenance decision-making.

2024 (Vol 36), Issue 5

Baojie WANG, Wei YANG, Ziyao LIU, Guohua LIANG

In China and other developing countries, some bicycle riders exhibit retrograde behaviour, which affects the riding safety of normal cyclists. The effect of retrograde behaviour on visual search and cycling behaviours of normal cyclists is investigated and quantified in this study. First, cyclists are instructed to wear an SMI iView ETG head-mounted mobile eye tracker and a mobile phone equipped with a Global Positioning System real-time location monitoring function to cycle on a road to obtain the times of fixation, saccade and blink, as well as the pupil diameter, gaze position and velocity in normal and retrograde conditions. Subsequently, the effect of retrograde behaviour on the attention of normal cyclists is analysed using three indexes: proportion of fixation time, coefficient of variation of pupil diameter and area of interest. Then, the effect of cycling behaviour is analysed using three indexes: the cycling trajectory, the velocity at three stages and the coefficient of variation of velocity. Finally, polynomial regression analysis is performed to analyse the visual and cycling behaviour impact indexes under the retrograde condition. The results show that retrograde behaviour significantly affects the vision and cycling behaviour of normal cyclists and that the two indexes are positively correlated.

2024 (Vol 36), Issue 5

Luka DEDIĆ, Miroslav VUJIĆ

In urban networks, periodic peak traffic congestion often occurs during the day, namely in the morning and afternoon hours. Due to spatial constraints and the inability to increase capacity through physical road expansion, modern traffic management increasingly relies on Intelligent Transport Systems (ITS) solutions. One such solution is the integration of automatic licence plate recognition, an expert system and microsimulation tools aimed at optimising the network performance of signalised intersections within a network. Based on real-time and historical data on individual vehicle trajectories, the system predicts the route of each vehicle through the observed segment of the traffic network, determines the network load and proposes optimal signal plans. This paper provides an overview of conducted research related to the optimisation of signal plans utilising expert systems. Mathematical models for capacity and load determination, as well as computational intelligence-based systems used for signalised intersection management strategies, are described. Finally, the paper proposes a basic framework and guidelines related to the suggested system, highlighting open questions and potential challenges in its development.

2024 (Vol 36), Issue 5

Yong CUI, Qing YU, Ullrich MARTIN

This study introduces an advanced software platform and process for the quantitative national economic evaluation of high-speed maglev systems, overcoming limitations of traditional methods through parameter variation experiments and automated solution search. Utilising the adapted German standardised evaluation, this research demonstrates how integrated modelling, evaluation and optimisation software can deeply analyse the impact of various variables and parameters on economic outcomes. By employing an optimisation algorithm, the software not only determines critical evaluation parameters to ensure benefits exceed costs but also deduces optimised model variables. The macroeconomic benefit-cost ratio guides the optimal design concept, with the research finding a critical value for ensuring economic feasibility. The proposed solution achieves a 22% improvement in this ratio (1.106 vs. 0.909) compared to the existing Hefei-Wuhu route, highlighting its potential for large-scale maglev implementation. Future development directions include integration with micro-simulation systems, support for random behaviour, sensitivity analysis, data-driven machine learning and enhanced user interface design for broader applicability. The findings underscore the software’s capability to provide robust, data-driven insights for economic feasibility studies of high-speed maglev systems, presenting a significant step forward in infrastructure project evaluation.

2024 (Vol 36), Issue 5

Qing LIU, Qiwei QIAN

Airport clusters are of great significance to the sustainable development of the civil aviation transportation industry. The study utilises common frontier and super-efficiency DEA methods to assess the efficiency of China’s six major airport groups. It then employs the Malmquist index method to analyse changes in airport productivity. The results highlight regional disparities in airport efficiency. The East China Airport Group and the Southwest Airport Group consistently demonstrate excellent efficiency values, while the North China Airport Group and the Northeast Airport Group have significant room for improvement. Most airports within the groups operate at low and ineffective levels, with efficiency initially increasing and then decreasing. Moreover, the technology gap ratio (TGR) for each airport group somewhat shows a downward trend. The Malmquist index indicates that the overall factor productivity of each airport has generally remained stable, with efficiency growth primarily dependent on scale efficiency. On average, technical efficiency has increased by 1.5%. However, in terms of technological changes, most airports have experienced technological regression, indicating insufficient focus on technological improvement. Therefore, it is crucial to prioritise technological innovation and enhance management efficiency to achieve efficiency improvements in airport clusters. It is necessary to formulate strategies accurately based on the specific conditions of different regions, promote coordinated development, foster regional exchanges and cooperation, address regional disparities, ensure sustainable development of China’s airport clusters, and establish a world-class airport cluster.

2024 (Vol 36), Issue 5

See All Articles

Special Issue Call

We invite you to contribute to our special issue

Innovation and New Technologies in Transport and Logistics

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD; Dario Babić, PhD; Marko Ševrović, PhD.

Transport and logistics, essential components of today's interconnected and globalized world, serve as the backbone of economies worldwide. They facilitate the seamless movement of goods and people, driving trade, commerce, and societal development. However, amidst their significance, contemporary transport and logistics sectors face multifaceted challenges that demand innovative solutions.

Ensuring accessibility of transportation services in both urban and rural areas remains a pressing concern. Additionally, environmental sustainability and the imperative for eco-friendly transportation and logistics solutions are paramount. Crafting responsive transport services that adapt to evolving demands and integrating diverse transport modes within the same infrastructure poses significant challenges. The precision and reliability of transportation providers are also critical factors in meeting modern logistics demands.

Read more...

IThenticate logo
Clarivate logo
Turn it in logo
Creative Commons Attribution 4.0 logo

Stay Focused

Read about the latest news in the T&T landscape

Editor's Choice Papers

Explore the selection of scientific papers handpicked by the editor

Promet - Traffic&Transportation web page on a laptop.jpg

Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović

The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.

2020 (Vol 32), Issue 6

Junzhuo Li, Wenyong Li, Guan Lian

Data-driven forecasting methods have the problems of complex calculations, poor portability and need a large amount of training data, which limits the application of data-driven methods in small cities. This paper proposes a traffic flow forecasting method using a Nonlinear AutoRegressive model with eXogenous variables (NARX model), which uses a dynamic neural network Focused Time-Delay Neural Network (FTDNN) with a Tapped Delay Line (TDL) structure as a nonlinear function. The TDL structure enables the FTDNN to have short-term memory capabilities. At the same time, before the data is input into the FTDNN, the use of trend decomposition or differential calculation on the traffic data sequence can make the NARX model maintain long-term predictive capabilities. Compared with common nonlinear models, the FTDNN has structural advantages. It uses a simple TDL structure without the memory mechanism and the gated structure, which can reduce the parameters of the model and reduce the scale of data. Through the four-day data of Guilin City, the traffic volume forecast for five minutes is verified, and the performance of the NARX model is better than that of the SARIMA model and the Holt-Winters model.

2022 (Vol 34), Issue 6

Laura Eboli, Maria Grazia Bellizzi, Gabriella Mazzulla

Evaluating air transport service quality is fundamen-tal to ensure acceptable quality standards for users and improve the services offered to passengers and tourists. In the transportation literature there is a wide range of studies about the evaluation of public transport service quality based on passengers’ perceptions; however, more recently, the evaluation of air transport service quality is becoming a relevant issue. Evaluating service quality in air transport sector represents a more stimulating chal-lenge, given the complexity of air transport system in re-gards to the other systems; in fact, air transport service is characterised by a great variety of service aspects relat-ing to services offered by the airlines and provided by the companies managing airports. The complexity of such a service requires a deep investigation on the methods adopted for collecting and analysing the data regarding passengers’ perceptions. We propose this paper just for treating these interesting aspects and to provide an ex-haustive literature review of the studies analysing ser-vice quality from the passengers’ point of view, where the opinions of the passengers are collected by the Customer Satisfaction Surveys (CSS). We decided to select papers published within the last decade (2010–2020) in journals indexed in important databases such as Scopus and WoS.

2022 (Vol 34), Issue 2

Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu

This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.

2021 (Vol 33), Issue 2

Snežana Tadić, Mladen Krstić, Milovan Kovač, Nikolina Brnjac

The negative effects of goods flows realisation are most visible in urban areas as the places of the greatest concentration of economic and social activities. The main goals of this article were to identify the applicable Industry 4.0 technologies for performing various city logistics (CL) operations, establish smart sustainable CL solutions (SSCL) and rank them in order to identify those which will serve as the base points for future plans and strategies for the development of smart cities. This kind of problem requires involvement of multiple stakeholders with their opposing goals and interests, and thus multiple criteria. For solving it, this article proposed a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment. The results of the model application imply that the potentially best SSCL solution is based on the combination of the concepts of micro-consolidation centres and autonomous vehicles with the support of artificial intelligence and Internet of Things technologies. The main contributions of the article are the definition of original SSCLs, the creation of a framework and definition of criteria for their evaluation and the development of a novel hybrid MCDM model.

2022 (Vol 34), Issue 5

Emma Strömblad, Lena Winslott Hiselius, Lena Smidfelt Rosqvist, Helena Svensson

In search for measures to reduce greenhouse gas emissions from transport, insights into the characteristics of all sorts of trips and specifically trips by car are needed. This paper focuses on everyday leisure trips for social and recreational purposes. Travel behaviour for these purposes is analysed considering individual and household factors as well as properties of the trip, based on Swedish national travel survey data. The analysis reveals that everyday leisure trips are often of joint character and that the average distance travelled per person and day increases with, for example, income, cohabitation, children in the household and residence in rural areas. The result also shows that the studied characteristics vary between studied trip purposes, influencing the sustainability potential of a reduction in car use and suggested measures. For instance, the largest share of passenger mileage comes from social trips, whereas trips for exercise and outdoor life have the largest share of car trips below 5 km. Several characteristics indicate difficulties in transferring trips by car to, for example, bicycle or public transport due to convenience, economy, start times, company etc. The study indicates that there is a need to take a broader view of the effective potential.

2022 (Vol 34), Issue 4


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal