Promet - Traffic & Transportation Journal
Pioneering the future of mobility
Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.
Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.
Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.
Open Access
We truly believe in knowledge without boundaries!
Journal's metrics
WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)
Latest Issue
Browse through the selection of our newest research
Baojie WANG, Wei YANG, Ziyao LIU, Guohua LIANG
In China and other developing countries, some bicycle riders exhibit retrograde behaviour, which affects the riding safety of normal cyclists. The effect of retrograde behaviour on visual search and cycling behaviours of normal cyclists is investigated and quantified in this study. First, cyclists are instructed to wear an SMI iView ETG head-mounted mobile eye tracker and a mobile phone equipped with a Global Positioning System real-time location monitoring function to cycle on a road to obtain the times of fixation, saccade and blink, as well as the pupil diameter, gaze position and velocity in normal and retrograde conditions. Subsequently, the effect of retrograde behaviour on the attention of normal cyclists is analysed using three indexes: proportion of fixation time, coefficient of variation of pupil diameter and area of interest. Then, the effect of cycling behaviour is analysed using three indexes: the cycling trajectory, the velocity at three stages and the coefficient of variation of velocity. Finally, polynomial regression analysis is performed to analyse the visual and cycling behaviour impact indexes under the retrograde condition. The results show that retrograde behaviour significantly affects the vision and cycling behaviour of normal cyclists and that the two indexes are positively correlated.
2024 (Vol 36), Issue 5
Meng ZHANG, Hua GUO, Jing-yang LI, Li LI, Feng ZHU
Low temperatures and icing in winter are significant factors that severely affect highway safety and traffic mobility. To enhance the precision and reliability of real-time winter road surface temperature (RST) prediction, a short-term prediction model is developed that harnesses both feature selection and deep learning. Leveraging meteorological data from a mountain highway in Yunnan, China, the key environmental variables affecting road surface temperature were first extracted using a random forest (RF) model for feature selection. These features were then combined with RST data to construct multiple groups of input variable combinations for the prediction model. A short-term prediction model with a 10-minute update frequency was built using a long short-term memory neural network (LSTM), namely RF-LSTM. The best input variable combination and preset parameters for the prediction model were determined through comparative testing with prevalent machine learning models, and the transferability of the prediction model was verified. The results showed that the best input variable combination for the RF-LSTM prediction model was road surface temperature and air temperature. The model recognised that the short-term RST was affected by long and short-term memory characteristics within a two-hour timeframe. When compared to the RF model, backpropagation (BP) neural network model and the standard LSTM model, the proposed model reduces prediction errors by 59.15%, 31.10% and 20.26%, respectively, while the prediction accuracy is 99.13% within an error margin of ±0.5℃. On the verification dataset, the proposed model maintains its time transferability with an average prediction absolute error of 0.0478. In all, the proposed model not only achieves a higher level of precision in real-time RST predictions but also ensures a more consistent and reliable performance under the challenging conditions of high altitude and mountainous terrain, offering enhanced support for traffic safety and road maintenance decision-making.
2024 (Vol 36), Issue 5
Fei-Hui HUANG
This study investigates the factors that drive users to sustain their usage of shared electric scooter (e-scooter) services in Taiwan, distinguishing itself from the conventional focus on predicting consumers’ initial adoption and behavioural intentions. It employs subjective rating questions, incorporating constructs related to user acceptance, attitudes and user experience (UX). Through hierarchical regression analysis of quantitative survey data, the study identifies key factors such as users’ modes of transportation, environmental attitudes, acceptance of shared services, attitudes towards private scooters, UX, total usage instances and age. However, reliance on private scooters as a mode of transportation and frequent usage of shared e-scooters negatively impact the sustained usage of these services. The research further highlights early development challenges in shared vehicle services, including concerns over personal data security, user-unfriendly system designs, lack of convenience, inadequate parking infrastructure and ineffective financial incentives. Based on these findings, the study provides recommendations for service providers and government entities to enhance service design and proactively address these challenges. Implementing these recommendations is expected to mitigate the impact of these challenges and potentially improve user acceptance, UX, and the overall sustainability of shared vehicle services.
2024 (Vol 36), Issue 5
Milivoje ILIĆ, Đorđe MAKSIMOVIĆ, Norbert PAVLOVIĆ, Ivan BELOŠEVIĆ
The concept of risk analysis is especially important because it examines and analyses in a detailed manner the factors that affect the normal functioning of a system. In this paper, the level crossing is considered as one system, composed of several elements. The failures of those elements were analysed with the aim of showing which are the most frequent and most critical failures. A multi-methodological approach was used in the analysis. The failure modes and effects analysis (FMEA) method was used to determine risk factors, after that a multi-criteria model was created in a fuzzy environment, and as output, it gave a ranking list of critical failures in the system. Through the discussion of the results, a comparison of the basic model with two other similar ones was made, and the comparative results were analysed. The main aim of this paper is to present one of the possible ways to analyse the risk of the system of level crossings with the aim of improving traffic safety at the crossing.
2024 (Vol 36), Issue 5
Xuelong ZHENG, Xuemei CHEN, Yaohan JIA
Vehicle trajectory prediction plays a critical role before the decision planning of autonomous vehicles in complex and dynamic traffic environments. It helps autonomous vehicles better understand the traffic environments and ensure safe and efficient tasks. In this study, a hierarchical trajectory prediction method is proposed. The graph attention network (GAT) model was selected to estimate the interactions of surrounding vehicles. Considering the behaviour of surrounding agents, the future trajectory of the target vehicle is predicted based on the long short-term memory network (LSTM). The model has been validated in real traffic environments. By comparing the accuracy and real-time performance of target vehicle trajectory prediction, the proposed model is superior to the traditional single trajectory prediction model. The results of this study will provide new modelling ideas and a theoretical basis for the vehicle trajectory prediction in urban traffic environments.
2024 (Vol 36), Issue 5
Minghao LI, Yi ZHAO, Jianxiao MA, Yuxin CHEN, Shuo HUAI
This study investigates the overtaking lane-changing (OLC) behaviour in expressway interchange weaving areas, aiming to analyse these behaviours’ causes and potential impacts. Field data are utilised to analyse the statistical characteristics of lane-changing points and spatio-temporal utilisation in weaving areas. A modified NS model, which considers the distribution pattern of vehicle speeds, and a rigid lane-changing rule based on Gaussian distribution are proposed. Additionally, a cellular automaton simulation model is constructed to quantify the influence of OLC behaviour on traffic efficiency and spatio-temporal utilisation based on simulated data. The findings indicate that the imbalanced distribution of lane-changing points and spatio-temporal utilisation in weaving segments, caused by rigid lane-changing behaviour, is an objective factor that triggers OLC behaviour. When the traffic volume in weaving areas ranges from 500 to 1,100 pcu/5 min and the proportion of OLC behaviour is between 0.35 and 0.7, the behaviour will significantly enhance the average vehicle speeds of the outermost lane of the main road and normal rigid lane-changing (NRLC) vehicles, with increases of up to 48% and 51%, respectively. Moreover, OLC behaviour also improves the balance of spatio-temporal utilisation in weaving areas and reduces the average spatio-temporal utilisation. This study clarifies the positive impact of OLC behaviour on expressway interchange weaving areas and provides new research ideas for enhancing the efficiency of these areas.
2024 (Vol 36), Issue 5
The New Special Issue is Out
Dive into the realm of cutting-edge research
Innovation and New Technologies in Transport and Logistics
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD; Dario Babić, PhD; Marko Ševrović, PhD.
Transport and logistics, essential components of today's interconnected and globalized world, serve as the backbone of economies worldwide. They facilitate the seamless movement of goods and people, driving trade, commerce, and societal development. However, amidst their significance, contemporary transport and logistics sectors face multifaceted challenges that demand innovative solutions.
Ensuring accessibility of transportation services in both urban and rural areas remains a pressing concern. Additionally, environmental sustainability and the imperative for eco-friendly transportation and logistics solutions are paramount. Crafting responsive transport services that adapt to evolving demands and integrating diverse transport modes within the same infrastructure poses significant challenges. The precision and reliability of transportation providers are also critical factors in meeting modern logistics demands.
Stay Focused
Read about the latest news in the T&T landscape
16th International Scientific Conference TRANSBALTICA 2025: Transportation Science and Technology
Vilnius Gediminas Technical University – VILNIUS TECH (Vilnius, Lithuania) has the pleasure of inviting You to join the 16th International Scientific Conference TRANSBALTICA 2025: Transportation Science and Technology.
The Conference will be held on September 18–19, 2025. The Conference aims to overview relevant issues of the transport system, present research results and exchange scientific expertise.
Read more10th International Ergonomics Conference - ERGONOMICS 2024
It is with great pleasure that we invite you to participate in the 10th International Ergonomics Conference - ERGONOMICS 2024, which will be held from December 5th to 6th, 2024 in Zagreb, Hotel International.
Read moreWorkshop - improving the publication process and developing the support system for the journal
Editorial Board meeting of the Promet – Traffic&Transportation journal took place on May 16th, 2023 as a workshop aimed at improving the publication process and developing the support system for the journal under the leadership of the Editor-in-Chief, Assoc. Prof. Ivona Bajor, PhD.
Read moreCooperation between Faculty of Transportation Engineering and Vehicle Engineering, Budapest and journal Promet – Traffic & Transportation
On March 9, 2023, Editor-in-Chief Ivona Bajor and Assistant Editor-in-Chief, Luka Novačko met with long-term partners of the scientific journal Promet – Traffic & Transportation, representatives of the Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Vice-Dean for science and international cooperation Dr. Adam Torok and Dr. Tibor Šipoš.
Read moreFaculty of Logistics signed a co-publishing agreement
On December 21, 2022, the Faculty of Transport and Traffic Sciences, as the publisher of the scientific journal Promet-Traffic&Transportation and the University of Maribor, Faculty of Logistics signed a co-publishing agreement
Read moreSuradnja vezana uz izdavanje međunarodnog časopisa Promet – Traffic&Transportation
Prošlog tjedna održao se sastanak u Celju kojem su prisustvovali glavna urednica časopisa Promet – Traffic and Transportation, doc. dr. sc. Ivona Bajor i zamjenik glavne urednice izv. prof. dr. sc. Luka Novačko sa predstavnicima Univerze v Mariboru, Fakulteta za logistiko, dekanicom Majom Fošner i prodekanom za financije Andrejem Lisecom.
Read moreEditor's Choice Papers
Explore the selection of scientific papers handpicked by the editor
Snežana Tadić, Mladen Krstić, Milovan Kovač, Nikolina Brnjac
The negative effects of goods flows realisation are most visible in urban areas as the places of the greatest concentration of economic and social activities. The main goals of this article were to identify the applicable Industry 4.0 technologies for performing various city logistics (CL) operations, establish smart sustainable CL solutions (SSCL) and rank them in order to identify those which will serve as the base points for future plans and strategies for the development of smart cities. This kind of problem requires involvement of multiple stakeholders with their opposing goals and interests, and thus multiple criteria. For solving it, this article proposed a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment. The results of the model application imply that the potentially best SSCL solution is based on the combination of the concepts of micro-consolidation centres and autonomous vehicles with the support of artificial intelligence and Internet of Things technologies. The main contributions of the article are the definition of original SSCLs, the creation of a framework and definition of criteria for their evaluation and the development of a novel hybrid MCDM model.
2022 (Vol 34), Issue 5
Ahmed Jaber, Bálint Csonka
The purpose of this research is to investigate the effect of land use, built environment and public transportation facilities’ locations on destinations of bike-sharing trips in an urban setting. Several methods have been applied to determine the relationship between predicting variables and trip destinations, such as ordinary least squares regression, spatial regression and geographically weighted regression. Additionally, a comparison between the proposed models, count models and random forest has been conducted. The data were collected in Budapest, Hungary. It has been found that touristic points of interest, and healthcare and educational points have a positive impact on bike-sharing destinations. Public transportation stops for buses, trains and trams attract bike-sharing users, which has a potential for the bike-and-ride system. Land use has different effects on bike-sharing trip destinations; mostly as a circular shape variation within the urban structure of the city, such as residential, industrial, commercial and educational zones. Other variables, such as road length and water areas, form as constraints to bike-sharing trip destinations. Geographically weighted and spatial regression performs better than count models and random forest. This study helps decision-makers in predicting the origin-destination matrix of bike-sharing trips based on the transportation network and land use.
2023 (Vol 35), Issue 1
Laura Eboli, Maria Grazia Bellizzi, Gabriella Mazzulla
Evaluating air transport service quality is fundamen-tal to ensure acceptable quality standards for users and improve the services offered to passengers and tourists. In the transportation literature there is a wide range of studies about the evaluation of public transport service quality based on passengers’ perceptions; however, more recently, the evaluation of air transport service quality is becoming a relevant issue. Evaluating service quality in air transport sector represents a more stimulating chal-lenge, given the complexity of air transport system in re-gards to the other systems; in fact, air transport service is characterised by a great variety of service aspects relat-ing to services offered by the airlines and provided by the companies managing airports. The complexity of such a service requires a deep investigation on the methods adopted for collecting and analysing the data regarding passengers’ perceptions. We propose this paper just for treating these interesting aspects and to provide an ex-haustive literature review of the studies analysing ser-vice quality from the passengers’ point of view, where the opinions of the passengers are collected by the Customer Satisfaction Surveys (CSS). We decided to select papers published within the last decade (2010–2020) in journals indexed in important databases such as Scopus and WoS.
2022 (Vol 34), Issue 2
Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu
This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.
2021 (Vol 33), Issue 2
Emma Strömblad, Lena Winslott Hiselius, Lena Smidfelt Rosqvist, Helena Svensson
In search for measures to reduce greenhouse gas emissions from transport, insights into the characteristics of all sorts of trips and specifically trips by car are needed. This paper focuses on everyday leisure trips for social and recreational purposes. Travel behaviour for these purposes is analysed considering individual and household factors as well as properties of the trip, based on Swedish national travel survey data. The analysis reveals that everyday leisure trips are often of joint character and that the average distance travelled per person and day increases with, for example, income, cohabitation, children in the household and residence in rural areas. The result also shows that the studied characteristics vary between studied trip purposes, influencing the sustainability potential of a reduction in car use and suggested measures. For instance, the largest share of passenger mileage comes from social trips, whereas trips for exercise and outdoor life have the largest share of car trips below 5 km. Several characteristics indicate difficulties in transferring trips by car to, for example, bicycle or public transport due to convenience, economy, start times, company etc. The study indicates that there is a need to take a broader view of the effective potential.
2022 (Vol 34), Issue 4
Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović
The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.
2020 (Vol 32), Issue 6