Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
13.03.2025
LICENSE
Copyright (c) 2025 Kaliprasana MUDULI, Deorishabh SAHU, Indrajit GHOSH

An Adaptable Framework for Identifying and Prioritising Road Traffic Accident Hotspots

Authors:Kaliprasana MUDULI, Deorishabh SAHU, Indrajit GHOSH

Abstract

This study introduces a novel, adaptable framework for identifying and prioritising road traffic accident hotspots using the Getis Ord Gi* spatial autocorrelation tool. The framework classifies regions as hotspots or coldspots based on accident severity and frequency. A unique weighting system is developed to compute the Crash Severity Index (CSI), considering the severity of crashes in terms of fatalities and injuries. The identified hotspots are prioritised using the CSI, providing policymakers with a structured approach to allocate resources for crash remedial measures. The main contribution of this work is the development of a flexible framework applicable to various cities, states or countries to improve road safety. The framework’s effectiveness is demonstrated through a case study in Punjab, India, revealing that Sangrur, Hoshiarpur and Police Commissionerate Ludhiana are the top three hotspots. The study also offers a detailed analysis of crash statistics in Punjab, emphasising the severity of pedestrian crashes. This approach addresses the current lack of structured hotspot identification and prioritization strategies, marking a significant advancement in road safety management.

Keywords:road traffic accidents, hotspot identification, crash severity, spatial analysis, road safety management, resource allocation

References

  1. [1] World Health Organization. Global Status Report on Road Safety 2018. Geneva: World Health Organization; 2018. Available from: http://apps.who.int/bookorders.
  2. [2] Dereli MA, Erdogan S. A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods. Transportation Research Part A: Policy and Practice. 2017;103:106–117. DOI: 10.1016/J.TRA.2017.05.031.
  3. [3] Vemulapalli SS, et al. GIS-based spatial and temporal analysis of aging-involved accidents: A case study of three counties in Florida. Applied Spatial Analysis and Policy. 2017;10(4):537–563. DOI: 10.1007/S12061-016-9192-4/FIGURES/9.
  4. [4] Lagarde E. Road traffic injury is an escalating burden in Africa and deserves proportionate research efforts. PLoS Med. 2007;4(6):170. DOI: 10.1371/JOURNAL.PMED.0040170.
  5. [5] Nantulya VM, Reich MR. The neglected epidemic: Road traffic injuries in developing countries. BMJ. 2002;324(7346):1139. DOI: 10.1136/BMJ.324.7346.1139.
  6. [6] Ministry of road transport & highways. Road accidents in India 2022. New Delhi: Government of India. Available from: https://morth.nic.in/road-accident-in-india
  7. [7] Agarwala R, Vasudevan V. Relationship between mobility and pedestrian traffic safety in India. Transportation in Developing Economies. 2020;6(2):1–10. DOI: 10.1007/S40890-020-00103-2.
  8. [8] Naqvi HM, Tiwari G. Factors explaining pedestrian-involved fatality crashes on National highways in India. Int J Inj Contr Saf Promot. 2022;29(3):321–330. DOI: 10.1080/17457300.2022.2029910.
  9. [9] Priyadarshini P, Mitra S. investigating pedestrian risk factors leading to pedestrian fatalities in Kolkata city roads. Transportation in Developing Economies. 2017;4(1):1–11. DOI: 10.1007/S40890-017-0054-9.
  10. [10] Mukherjee D, Mitra S. Modelling risk factors for fatal pedestrian crashes in Kolkata, India. Int J Inj Contr Saf Promot. 2020;27(2):197–214. DOI: 10.1080/17457300.2020.1725894.
  11. [11] Hussain MS, Goswami AK, Gupta A. Predicting pedestrian crash locations in urban India: An integrated GIS-based spatiotemporal HSID technique. Journal of Transportation Safety & Security. 2023;15(2):103–136. DOI: 10.1080/19439962.2022.2048759.
  12. [12] Achu AL, et al. Spatio-temporal analysis of road accident incidents and delineation of hotspots using geospatial tools in Thrissur district, Kerala, India. KN J Cartogr Geogr Inf. 2019;69(4):255–265. DOI: 10.1007/S42489-019-00031-1.
  13. [13] Loo BPY. Spatial analysis methods of road traffic collisions. Routledge; 2016. Available from: https://www.routledge.com/Spatial-Analysis-Methods-of-Road-Traffic-Collisions/Loo-Anderson/p/book/9781439874127
  14. [14] Retallack AE, Ostendorf B. Current understanding of the effects of congestion on traffic accidents. International Journal of Environmental Research and Public Health. 2019;16(18):3400. DOI: 10.3390/IJERPH16183400.
  15. [15] Pradhan B, Sameen MI. Modeling traffic accident severity using neural networks and support vector machines. Advances in Science, Technology and Innovation. 2020:111–117. DOI: 10.1007/978-3-030-10374-3_9/COVER.
  16. [16] Zahran ESM, et al. Spatial analysis of road traffic accident hotspots: Evaluation and validation of recent approaches using road safety audit. Journal of Transportation Safety & Security. 2019;13(6):575–604. DOI: 10.1080/19439962.2019.1658673.
  17. [17] Cheng W, et al. Comparison of multivariate poisson lognormal spatial and temporal crash models to identify hot spots of intersections based on crash types. Accid Anal Prev. 2017;99:330–341. DOI: 10.1016/J.AAP.2016.11.022.
  18. [18] Barman S, Bandyopadhyaya R. Alternative method for identifying crash hotspot using detailed crash information from first information report (FIR). Transportation in Developing Economies. 2021;7(2):1–13. DOI: 10.1007/S40890-021-00124-5.
  19. [19] Chen C, Li T, Sun J, Chen F. Hotspot identification for shanghai expressways using the quantitative risk assessment method. Int J Environ Res Public Health. 2017;14(1):20. DOI: 10.3390/IJERPH14010020.
  20. [20] Yu H, Liu P, Chen J, Wang H. Comparative analysis of the spatial analysis methods for hotspot identification. Accid Anal Prev. 2014;66:80–88. DOI: 10.1016/J.AAP.2014.01.017.
  21. [21] Fawcett L, Thorpe N. Mobile safety cameras: Estimating casualty reductions and the demand for secondary healthcare. Journal of Applied Statistics. 2013;40(11):2385–2406. DOI: 10.1080/02664763.2013.817547.
  22. [22] Ouni F, Belloumi M. Pattern of road traffic crash hot zones versus probable hot zones in Tunisia: A geospatial analysis. Accid Anal Prev. 2019;128:185–196. DOI: 10.1016/J.AAP.2019.04.008.
  23. [23] Tola AM, Demissie TA, Saathoff F, Gebissa A. Severity, spatial pattern and statistical analysis of road traffic crash hot spots in Ethiopia. Applied Sciences. 2021;11(19):8828. DOI: 10.3390/APP11198828.
  24. [24] Road Traffic Accidents in NSW-1998.
  25. [25] Zhang Z, Ming Y, Song G. A new approach to identifying crash hotspot intersections (CHIs) using spatial weights matrices. Applied Sciences. 2020;10(5):1625. DOI: 10.3390/APP10051625.
  26. [26] Lee M, Khattak AJ. Case study of crash severity spatial pattern identification in hot spot analysis. Transportation Research Record. 2019;2673(9):684–695. DOI: 10.1177/0361198119845367/ASSET/IMAGES/LARGE/10.1177_0361198119845367-FIG2.JPEG.
  27. [27] Getis A, Ord JK. The analysis of spatial association by use of distance statistics. Advances in Spatial Science. 2010;61:127–145. DOI: 10.1007/978-3-642-01976-0_10/TABLES/7.
  28. [28] Erdogan S, Yilmaz I, Baybura T, Gullu M. Geographical information systems aided traffic accident analysis system case study: City of Afyonkarahisar. Accid Anal Prev. 2008;40(1):174–181. DOI: 10.1016/J.AAP.2007.05.004.
  29. [29] Sacchi E, Sayed T, El-Basyouny K. Multivariate full bayesian hot spot identification and ranking. Transportation Research Record. 2015;2515:1–9. DOI: 10.3141/2515-01.
  30. [30] Elvik R. Comparative analysis of techniques for identifying locations of hazardous roads. Transportation Research Record. 2008;2083:72–75. DOI: 10.3141/2083-08.
  31. [31] Zhang C, Ivan JN. Effects of geometric characteristics on head-on crash incidence on two-lane roads in Connecticut. Transportation Research Record. 2019;1908(1):159–164. DOI: 10.1177/0361198105190800119.
  32. [32] Plug C, Xia J, Caulfield C. Spatial and temporal visualisation techniques for crash analysis. Accid Anal Prev. 2011;43(6):1937–1946. DOI: 10.1016/J.AAP.2011.05.007.
  33. [33] Erdogan S. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. J Safety Res. 2009;40(5):341–351. DOI: 10.1016/J.JSR.2009.07.006.
  34. [34] Mitra S. Spatial autocorrelation and bayesian spatial statistical method for analyzing intersections prone to injury crashes. Transportation Research Record. 2009;2136:92–100. DOI: 10.3141/2136-11.
  35. [35] Anselin L. Local indicators of spatial association—LISA. Geographical Analysis. 1995;27(2):93–115. DOI: 10.1111/J.1538-4632.1995.TB00338.X.
  36. [36] Getis A, Ord JK. The analysis of spatial association by use of distance statistics. Advances in Spatial Science. 2010;61:127–145. DOI: 10.1007/978-3-642-01976-0_10/TABLES/7.
  37. [37] Khan G, Qin X, Noyce DA. Spatial analysis of weather crash patterns. J Transp Eng. 2008;134(5):191–202. DOI: 10.1061/(ASCE)0733-947X(2008)134:5(191).
  38. [38] Washington S, Afghari AP, Haque MM. Detecting high-risk accident locations. Transport and Sustainability. 2018;11:351–382. DOI: 10.1108/S2044-994120180000011018/FULL/EPUB.
  39. [39] Gross FB, et al. Evaluation of four network screening performance measures. Oct. 2016. DOI: 10.21949/1503647.
  40. [40] Geurts K, Wets G, Brijs T, Vanhoof K. Identification and ranking of black spots: Sensitivity analysis. Transportation Research Record. 2004;1897:34–42. DOI: 10.3141/1897-05.
  41. [41] Songchitruksa P, Zeng X. Getis–Ord spatial statistics to identify hot spots by using incident management data. Transportation Research Record. 2010;2165:42–51. DOI: 10.3141/2165-05.
Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal