Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
06.02.2025
LICENSE
Copyright (c) 2025 Jelica DAVIDOVIĆ, Dalibor PEŠIĆ, Boris ANTIĆ

How to Reduce Work-Related Road Deaths? Driver Fatigue Monitoring – Case Study

Authors:Jelica DAVIDOVIĆ, Dalibor PEŠIĆ, Boris ANTIĆ

Abstract

Work-related road deaths are the leading cause of occupational death. These traffic accidents contribute to at least one quarter all work-related deaths. Key risk factors associated with driving for work are driver fatigue and speeding. Driver fatigue is the growing problem of the new era. Due to traffic exposure, commercial vehicles are identified as a particularly risky category. According to traffic accident data, depending on the country, the percentage of traffic accidents caused by driver fatigue ranges up to 40%. In this paper, we used a unique procedure for identifying fatigue based on eleven factors, using expert knowledge, budget allocation and the composite rank method. The case study was realised in the Republic of Serbia, which is a country with a huge professional drivers deficiency problem. The main objective of this paper is to present an approach to reducing work-related road deaths to reach vision zero, based on a model for identifying commercial vehicle driver fatigue before the drivers start their shift. The advantage of this model is that it does not distract the driver in any way while driving and is based on objective data. It does not require recording the driver with a camera or hooking up to an electrode to record heart or brain activity.

Keywords:work related road deaths, fatigue, road safety, commercial vehicle drivers, road safety performance indicators, new fatigue identification model

References

  1. [1] European Transport Safety Council - https://etsc.eu/up-to-40-of-road-deaths-in-europe-are-work-related/ (accessed 11.3.2022.)
  2. [2] Newnam S, Muir C. Reforming the future of workplace road safety using systems-thinking workplace road safety surveillance. Saf Sci. 2021;138(105225):105225. DOI:10.1016/j.ssci.2021.105225.
  3. [3] Williamson A, et al. The link between fatigue and safety. Accid Anal Prev. 2011;43(2):498-515. DOI:10.1016/j.aap.2009.11.011.
  4. [4] Driscoll T, et al. Comparison of fatalities from work related motor vehicle traffic incidents in Australia, New Zealand, and the United States. Inj Prev. 2005;11(5):294-299. DOI:10.1136/ip.2004.008094.
  5. [5] Peden M. World report on road traffic injury prevention, 2004.
  6. [6] Elvik R. Occupational risk in road transport in Norway, Working paper of January 30, 2007, Institute of Transport Economics.
  7. [7] EC, 2023- https://road-safety.transport.ec.europa.eu/european-road-safety-observatory/statistics-and-analysis-archive/work-related-crashes/work-related-traffic-injury_en (accessed 25.01.2024.)
  8. [8] Broughton J, et al. Work-related road accidents. Prepared for Road Safety Division, Department for Transport, TRL Report TRL582, ISSN 0968-4107, TRL Limited 2003.
  9. [9] Davidović J, Pešić D, Antić B, Božović M. Comparative analysis of driver fatigue in three companies from different industries. Transp Res Procedia. 2023;69:233-240. DOI:10.1016/j.trpro.2023.02.167.
  10. [10] ITF. Road Safety Annual Report 2021: The Impact of Covid-19, OECD Publishing, Paris, 2021.
  11. [11] Dawson D, Sprajcer M, Thomas M. How much sleep do you need? A comprehensive review of fatigue related impairment and the capacity to work or drive safely. Accid Anal Prev. 2021;151(105955):105955. DOI:10.1016/j.aap.2020.105955.
  12. [12] Davidović J, Pešić D, Lipovac K, Antić B. The significance of the development of road safety performance indicators related to driver fatigue. Transp Res Procedia. 2020;45:333-342. DOI:10.1016/j.trpro.2020.03.024.
  13. [13] Vivoda JM, Pratt SG, Gillies SJ. The relationships among roadway safety management practices, collision rates, and injury rates within company fleets. Saf Sci. 2019;120:589-602. DOI:10.1016/j.ssci.2019.07.033.
  14. [14] Davidović J, Pešić D, Antić B. Professional drivers’ fatigue as a problem of the modern era. Transp Res Part F Traffic Psychol Behav. 2018;55:199-209. DOI:10.1016/j.trf.2018.03.010.
  15. [15] Watling CN, Armstrong KA, Radun I. Examining signs of driver sleepiness, usage of sleepiness countermeasures and the associations with sleepy driving behaviours and individual factors. Accid Anal Prev. 2015;85:22-29. DOI:10.1016/j.aap.2015.08.022.
  16. [16] Gonçalves M, Amici R, Lucas R, et al. Sleepiness at the wheel across Europe: A survey of 19 countries. J Sleep Res. 2015;24(3):242-253. DOI:10.1111/jsr.12267.
  17. [17] RTSA, 2024 - http://bazabs.abs.gov.rs/smartPortal/saobNezgode (accessed 25.01.2024.)
  18. [18] Wei J. Research of driver fatigue alarm algorithm based on visual information. Master’s thesis. Harbin Institute of Technology, Harbin; 2010.
  19. [19] Li D, Liu Q, Yuan W, Liu H. Relationship between fatigue driving and traffic accident. J. Traffic Transp. Eng. 2010;10(2),104–109.
  20. [20] Zhang H, et al. Structural analysis of driver fatigue behavior: A systematic review. Transp Res Interdiscip Perspect. 2023;21(100865):100865. DOI:10.1016/j.trip.2023.100865.
  21. [21] Forsman PM, et al. Efficient driver drowsiness detection at moderate levels of drowsiness. Accid Anal Prev. 2013;50:341-350. DOI:10.1016/j.aap.2012.05.005.
  22. [22] Thiffault P, Bergeron J. Monotony of road environment and driver fatigue: a simulator study. Accid Anal Prev. 2003;35(3):381-391. DOI:10.1016/s0001-4575(02)00014-3.
  23. [23] Sun Y, et al. Extraction of optimal measurements for drowsy driving detection considering driver fingerprinting differences. J Adv Transp. 2021;2021:1-17. DOI:10.1155/2021/5546127.
  24. [24] Morris DM, Pilcher JJ, Switzer FS III. Lane heading difference: An innovative model for drowsy driving detection using retrospective analysis around curves. Accid Anal Prev. 2015;80:117-124. DOI:10.1016/j.aap.2015.04.007.
  25. [25] Tu C, et al. Vehicle position monitoring using Hough transform. IERI Procedia. 2013;4:316-322. DOI:10.1016/j.ieri.2013.11.045.
  26. [26] Civik E, Yuzgec U. Real-time driver fatigue detection system with deep learning on a low-cost embedded system. Microprocessors and Microsystems. 2023;99:104851. DOI: 10.1016/j.micpro.2023.104851.
  27. [27] Hu X, Lodewijks G. Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. J Safety Res. 2020;72:173-187. DOI:10.1016/j.jsr.2019.12.015.
  28. [28] Zhang Q, Wu C, Zhang H. Driving fatigue prediction model considering schedule and circadian rhythm. J Adv Transp. 2020;2020:1-10. DOI:10.1155/2020/9496259.
  29. [29] Diaz-Chito K, Hernández-Sabaté A, López AM. A reduced feature set for driver head pose estimation. Appl Soft Comput. 2016;45:98-107. DOI:10.1016/j.asoc.2016.04.027.
  30. [30] Zhang Y, Hua C. Driver fatigue recognition based on facial expression analysis using local binary patterns. Optik (Stuttg). 2015;126(23):4501-4505. DOI:10.1016/j.ijleo.2015.08.185.
  31. [31] Jo J, et al. Detecting driver drowsiness using feature-level fusion and user-specific classification. Expert Syst Appl. 2014;41(4):1139-1152. DOI:10.1016/j.eswa.2013.07.108.
  32. [32] Li Z, Nianqiang L. Fatigue driving detection system based on face feature. In: 2019 IEEE 2nd International Conference on Electronics Technology (ICET). IEEE; 2019. DOI:10.1109/eltech.2019.8839479.
  33. [33] Klauer SG, Dingus TA, Neale VL, Carroll RJ. The effects of fatigue on driver performance for single and team long-haul truck drivers. In: Proceedings of the 2nd International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design: Driving Assessment 2003. University of Iowa; 2005. DOI:10.17077/drivingassessment.1109.
  34. [34] Wang F, Gu T, Yao W. Research on the application of the Sleep EEG Net model based on domain adaptation transfer in the detection of driving fatigue. Biomed Signal Process Control. 2024;90(105832):105832. DOI:10.1016/j.bspc.2023.105832.
  35. [35] Cui J, et al. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG. Published online 2021. DOI:10.48550/ARXIV.2106.00613.
  36. [36] Jung SJ, Shin HS, Chung WY. Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell Transp Syst. 2014;8(1):43-50. DOI:10.1049/iet-its.2012.0032.
  37. [37] McKenna FP. Can sleep habits predict driver behaviour? Eur Rev Appl Psychol. 2014;64(3):97-100. DOI:10.1016/j.erap.2013.07.007
  38. [38] Zhao C, Zhao M, Liu J, Zheng C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid Anal Prev. 2012;45:83-90. DOI:10.1016/j.aap.2011.11.019.
  39. [39] Hancock PA, Verwey WB. Fatigue, workload and adaptive driver systems. Accid Anal Prev. 1997;29(4):495-506. DOI:10.1016/s0001-4575(97)00029-8.
  40. [40] IRU, 2023 - https://www.iru.org/news-resources/newsroom/europes-bus-and-coach-driver-shortage-widens-54-grim-outlook-2028 (accessed 25.01.2024.)
  41. [41] ERFB, 2023 - https://www.girteka.eu/continuing-driver-shortage-a-solution-outside-the-eu-at-hand/ (accessed 25.01.2024.)
  42. [42] Association of transporters in Serbia, 2023 - https://blog.klevercargo.rs/deficit-vozaca-kamiona/?_rstr_nocache=rstr52965b542030944f (accessed 20.01.2024.)
  43. [43] Hermans E, Brijs T, Wets G, Vanhoof K. Benchmarking road safety: Lessons to learn from a data envelopment analysis. Accid Anal Prev. 2009;41(1):174-182. DOI:10.1016/j.aap.2008.10.010.
  44. [44] Sparrow AR, et al. Naturalistic field study of the restart break in US commercial motor vehicle drivers: Truck driving, sleep, and fatigue. Accid Anal Prev. 2016;93:55-64. DOI:10.1016/j.aap.2016.04.019.
  45. [45] Pešić D, Antić B, Brčić D, Davidović J. Driver’s attitudes about the impact of caffeine and energy drinks on road traffic safety. PROMET - Traffic&Transp. 2015;27(3):267-278. DOI:10.7307/ptt.v27i3.1503.
  46. [46] Reyner LA, Horne JA. Suppression of sleepiness in drivers: Combination of caffeine with a short nap. Psychophysiology. 1997;34(6):721-725. DOI:10.1111/j.1469-8986.1997.tb02148.x.
  47. [47] Reyner LA, Horne JA. Early morning driver sleepiness: Effectiveness of 200 mg caffeine. Psychophysiology. 2000 Mar;37(2):251-6. PMID: 10731775.
  48. [48] Horne JA, Reyner LA. Sleep related vehicle accidents. BMJ. 1995;310(6979):565-567. DOI:10.1136/bmj.310.6979.565.
  49. [49] Horne JA, Reyner LA. Counteracting driver sleepiness: Effects of napping, caffeine, and placebo. Psychophysiology. 1996;33(3):306-309. DOI:10.1111/j.1469-8986.1996.tb00428.x.
  50. [50] Pešić D, Antić B, Davidović J. Fatigue as road safety performance indicator. Proceedings of XI International Conference Road Safety in Local Community, 2016, Vrnjačka Banja, 145-152, ISBN 978-86- 7020-371-6.
  51. [51] Diependaele К. Sleepy at the wheel. Analysis of the extent and characteristics of sleepiness among Belgian car drivers. Belgian Road Safety Institute – Knowledge Centre Road Safety, 2015.
  52. [52] Radun I, Radun JE. Seasonal variation of falling asleep while driving: An examination of fatal road accidents. Chronobiol Int. 2006;23(5):1053-1064. DOI:10.1080/07420520600921096.
  53. [53] Torregroza-Vargas NM, Bocarejo JP, Ramos-Bonilla JP. Fatigue and crashes: The case of freight transport in Colombia. Accid Anal Prev. 2014;72:440-448. DOI:10.1016/j.aap.2014.08.002.
  54. [54] Charlton SG, Baas PH, Alley BD, Luther RE. Analysis of fatigue levels in New Zealand taxi and local-route truck drivers. Transport engineering research New Zealand limited, Report, 2003.
  55. [55] Charlton SG, Baas PH. Fatigue, work-rest cycles, and psychomotor performance of New Zealand truck drivers. New Zealand Journal of Psychology. 2006; 30(1), 32-39, https://hdl.handle.net/10289/3432
  56. [56] Hamelin P. Lorry driver’s time habits in work and their involvement in traffic accidents. Ergonomics. 1987;30(9):1323-1333. DOI:10.1080/00140138708966026.
  57. [57] Cori JM et al. The impact of 7-hour and 11-hour rest breaks between shifts on heavy vehicle truck drivers’ sleep, alertness and naturalistic driving performance. Accident Analysis & Prevention. 2021;159:106224. DOI: 10.1016/j.aap.2021.106224.
  58. [58] Anund A, et al. Countermeasures for fatigue in transportation – A review of existing methods for drivers on road, rail, sea and in aviation. Swedish National Road and Transport Research Institute (VTI) www.vti.se, VTI rapport 852A, 2015.
  59. [59] Yildirim RC. Caffeine consumption in drivers of heavy vehicles in Turkey. Public Health. 2003;117(5):329-332. DOI:10.1016/S0033-3506(03)00076-3.
  60. [60] Maycock G. Sleepiness and driving: the experience of U.K. car drivers. Accid Anal Prev. 1997;29(4):453-462. DOI:10.1016/s0001-4575(97)00024-9.
  61. [61] Obst P, Armstrong K, Smith S, Banks T. Age and gender comparisons of driving while sleepy: Behaviours and risk perceptions. Transp Res Part F Traffic Psychol Behav. 2011;14(6):539-542. DOI:10.1016/j.trf.2011.06.005.
  62. [62] Vujanić M, Pešić D, Antić B, Davidović J. Comparative analysis of attitudes of young drivers on the influence of energy drinks on driving and subjective feeling of fatigue while driving. Proceedings of X International Conference Road Safety in Local Community 2015, Kragujevac, 211-219, ISBN 978-86-7020-316-7.
Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal