Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
13.03.2025
LICENSE
Copyright (c) 2025 Adisa MEDIĆ, Amel KOSOVAC, Ermin MUHAREMOVIĆ, Muhamed BEGOVIĆ

Machine Learning Application for Improving Customer and Postal Logistics Operator Satisfaction in Urban Areas – A Review

Authors:Adisa MEDIĆ, Amel KOSOVAC, Ermin MUHAREMOVIĆ, Muhamed BEGOVIĆ

Abstract

Machine learning (ML) is a crucial component of artificial intelligence that has recently attracted attention for its application in logistics. ML algorithms are used on large datasets. They create logic correlations among given data and provide predictions of specific values. This research paper aims to conduct a systematic literature review to showcase the potential applications of machine learning in urban logistics systems, specifically focusing on enhancing satisfaction for postal logistics operators and their customers. The authors used various research publication databases in this context (Web of Science, Scopus, Google Scholar etc). The analysis of different models provides insights into diverse aspects, such as predicting product prices and types of cargo, evaluating user satisfaction, forecasting user departures, assessing optimal geographical locations for implementing postal centres, predicting purchase times before online orders, estimating delivery times in the last phase of the logistics chain and more. The significance of this research is highlighted through the identification of shortcomings in existing literature, offering guidelines for future research in developing new machine learning model for optimal operator selection. This model aims to achieve improvements in both customer and operator satisfaction simultaneously.

Keywords:machine learning; machine learning model; city logistics; urban logistics; stakeholders; literature review.

References

  1. [1] Kosovac A. Infrastruktura poštanskog saobraćaja. Sarajevo-Zagreb, Bosna i Hercegovina: Fakultet za saobraćaj i komunikacije Univerziteta i Synopsis; 2020.
  2. [2] Kosovac A, Muharemović E. Procesi logističkih sistema. Sarajevo-Zagreb, Bosna i Hercegovina: Fakultet za saobraćaj i komunikacije Univerziteta i Synopsis; 2022.
  3. [3] Reda AK, Gebresenbet G, Tavasszy L, Ljungberg D. Identification of the regional and economic contexts of sustainable urban logistics policies. Sustainability. 2020;12(20):8322. DOI: 10.3390/su12208322.
  4. [4] Report on Postal Definitions. The European Regulators Group for Postal Services. ERGP (20)7, 2020.
  5. [5] Hadaś Ł, Stachowiak A, Cyplik P. Production-logistic system in the aspect of strategies for production planning and control and for logistic customer service. LogForum. 2014;10(3).
  6. [6] Straka M. The position of distribution logistics in the logistic system of an enterprise. Acta logistica. 2017;4(2):23-6. DOI: 10.22306/al.v4i2.5.
  7. [7] Burinskiene A, Lorenc A, Lerher T. A simulation study for the sustainability and reduction of waste in warehouse logistics. International Journal of Simulation Modelling. 2018;17(3):485-97. DOI: 10.2507/IJSIMM17(3)446.
  8. [8] Stanišić M, Regodić D. Informacioni sistem integrisane logistike i podrška nabavkama. Naučni skup sa međunarodnim učešćem Sinergija. 2009:87-93.
  9. [9] Dobroselskyi M, Madleňák R, Laitkep D. Analysis of return logistics in e-commerce companies on the example of the Slovak Republic. Transportation Research Procedia. 2021;55:318-25. DOI: 10.1016/j.trpro.2021.06.037.
  10. [10] Dowlatshahi S. Developing a theory of reverse logistics. Interfaces. 2000;30(3):143-55. DOI: 10.1287/inte.30.3.143.11670.
  11. [11] Zečević S, Tadić S. City logistika. Beograd, Srbija: Univerzitet u Beogradu Saobraćajni fakultet; 2013.
  12. [12] Total and urban population. UNCTAD Handbook of Statistics. 2022. https://hbs.unctad.org/total-and-urban-population/ [accessed May 05, 2023].
  13. [13] Profiroiu CM, Bodislav DA, Burlacu S, Rădulescu CV. Challenges of sustainable urban development in the context of population growth. European Journal of Sustainable Development. 2020;9(3):51. DOI: 10.14207/ejsd.2020.v9n3p51.
  14. [14] Kosovac A, Muharemović E, Medić A. Pregled inovativnih tehnologija u funkciji modernizacije poslovanja poštansko–logističkih operatora. XL Simpozijum o novim tehnologijama u poštanskom i telekomunikacionom saobraćaju – PosTel 2022, Beograd, 2022. DOI: 10.37528/ftte/9788673954165/postel.2022.013.
  15. [15] Berson A, Thearling K. Building data mining applications for CRM. McGraw-Hill, Inc.; 1999 Dec 1.
  16. [16] E. Alpaydin, Introduction to Machine Learning, Third Edit. London, England: Massachusetts Institute of Technology All; 2014.
  17. [17] Woschank M, Rauch E, Zsifkovits H. A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics. Sustainability. 2020;12(9):3760. DOI: 10.3390/su12093760.
  18. [18] Armstrong G, Adam S, Denize S, Kotler P. Principles of marketing. Pearson Australia; 2014 Oct 1.
  19. [19] Brewer AM, Button KJ, Hensher DA, editors. Handbook of logistics and supply-chain management. Emerald Group Publishing Limited; 2008 Feb 28.
  20. [20] Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of internal medicine. 2009;151(4):W-65. DOI: 10.1371/journal.pmed.1000100.
  21. [21] De Carvalho PP, Kalid RD, Rodríguez JL. Evaluation of the city logistics performance through structural equations model. IEEE Access. 2019;7:121081-94. DOI: 10.1109/ACCESS.2019.2934647.
  22. [22] Taniguchi E, Thompson RG, Yamada T, van Duin R. Modelling city logistics. In City logistics 2001 Jan 23 (pp. 17-47). Emerald Group Publishing Limited.
  23. [23] Taniguchi E, Thompson RG, Yamada T. Predicting the effects of city logistics schemes. Transport Reviews. 2003;23(4):489-515. DOI: 10.1080/01441640210163999.
  24. [24] B Kombaitan IT, Idwan Santoso IT. PROPOSED OF DECISION POLICY MODEL DEVELOPMENT FOR CITY LOGISTICS STAKEHOLDERS. In Proceeding, International Seminar on Industrial Engineering and Management 2013 (Vol. 2013, No. 6, pp. 54-62). ISIEM.
  25. [25] Katsela K, Browne M. Importance of the stakeholders’ interaction: Comparative, longitudinal study of two city logistics initiatives. Sustainability. 2019;11(20):5844. DOI: 10.3390/su11205844.
  26. [26] What Is A Logistics Service Provider?. TRANS Oriental Partner (TOP) Logistics, 2020. https://www.thetoplogistics.com/blog/what-logistics-service-provider [accessed Oct. 09, 2022].
  27. [27] Multaharju S, Hallikas J. Logistics service capabilities of logistics service provider. International Journal of Logistics Systems and Management 5. 2015;20(1):103-21. DOI: 10.1504/IJLSM.2015.065975.
  28. [28] Wisetjindawat W, Sano K. A behavioral modeling in micro-simulation for urban freight transportation. Journal of the Eastern Asia Society for Transportation Studies. 2003;5(3):2193-208.
  29. [29] Parlamentarna skupština Bosne i Hercegovine. Zakon o poštama Bosne i Hercegovine. Sarajevo, Bosna i Hercegovina:“Sl. glasnik BiH”, br. 33/2005; 2005.
  30. [30] Kharat PP, Nagare M. Business Development - B2B and B2C Ecommerce Pramita. International Journal of Research Publication and Reviews. 2021.
  31. [31] DeGregory KW, et al. A review of machine learning in obesity. Obesity reviews. 2018;19(5):668-85. DOI: 10.1111/obr.12667.
  32. [32] Taheri M, et al. A review of machine learning approaches to soil temperature estimation. Sustainability. 2023;15(9):7677. DOI: 10.3390/su15097677.
  33. [33] Bishop C. Pattern recognition and machine learning. Springer google schola. 2006;2:531-7.
  34. [34] Mitchell TM. Does machine learning really work?. AI magazine. 1997;18(3):11. DOI: 10.1609/aimag.v18i3.1303.
  35. [35] Kosovac A, Medić A, Begović M. Machine learning modeling for reducing greenhouse gas emissions in urban areas. International conference on advances in traffic and communication technologies (ATCT) 2023, Sarajevo, Bosnia and Herzegovina. p. 131–136.
  36. [36] Wuest T, Weimer D, Irgens C, Thoben KD. Machine learning in manufacturing: Advantages, challenges, and applications. Production & Manufacturing Research. 2016;4(1):23-45. DOI: 10.1080/21693277.2016.1192517.
  37. [37] Giraud-Carrier C, Povel O. Characterising data mining software. Intelligent Data Analysis. 2003;7(3):181-92. DOI: 10.3233/IDA-2003-7302.
  38. [38] Alzubi J, Nayyar A, Kumar A. Machine learning from theory to algorithms: An overview. In Journal of physics: conference series 2018 Nov (Vol. 1142, p. 012012). IOP Publishing. DOI: 10.1088/1742-6596/1142/1/012012.
  39. [39] Čolaković A, et al. Application of machine learning in the fight against the COVID-19 pandemic: A review. Acta facultatis medicae Naissensis. 2022;39(4):389-409. DOI: 10.5937/afmnai39-38354.
  40. [40] Taniguchi E, Thompson RG. Modeling city logistics. Transportation research record. 2002;1790(1):45-51. DOI: 10.3141/1790-06.
  41. [41] Johansson H. Customer benefits in city logistics: Towards viable urban consolidation centres. Linköping University Electronic Press; 2020 Mar 20. DOI: 10.3384/diss.diva-164522.
  42. [42] 9 Use Cases of Machine Learning in Logistics. Serengeti Software Tech. 2022. https://serengetitech.com/business/9-use-cases-of-machine-learning-in-logistics/ [accessed Nov. 17, 2022].
  43. [43] Tian Z, et al. A blockchain-based evaluation approach for customer delivery satisfaction in sustainable urban logistics. International Journal of Production Research. 2021;59(7):2229-49. DOI: 10.1080/00207543.2020.1809733.
  44. [44] Lee CK. A GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0. International Journal of Production Research. 2017;55(2):593-605. DOI: 10.1080/00207543.2016.1221162.
  45. [45] Bakhtyar S, Henesey L. Freight transport prediction using electronic waybills and machine learning. In Proceedings 2014 international conference on informative and cybernetics for computational social systems (ICCSS) 2014 Oct 9 (pp. 128-133). IEEE.
  46. [46] Sun H, Xie J, Li SY, Xue Y. Customer satisfaction degree evaluation model in logistics using Svm. IFAC Proceedings Volumes. 2005;38(1):299-304. DOI: 10.3182/20050703-6-CZ-1902.01128.
  47. [47] Tufano A, Accorsi R, Manzini R. Machine learning methods to improve the operations of 3PL logistics. Procedia Manufacturing. 2020;42:62-9. DOI: 10.1016/j.promfg.2020.02.023.
  48. [48] Matuszelański K, Kopczewska K. Customer churn in retail e-commerce business: Spatial and machine learning approach. Journal of Theoretical and Applied Electronic Commerce Research. 2022;17(1):165-98. DOI: 10.3390/jtaer17010009.
  49. [49] Mahoto NA, et al. An intelligent business model for product price prediction using machine learning approach. Intelligent Automation & Soft Computing. 2021;30(1). DOI: 10.32604/iasc.2021.018944.
  50. [50] Pavlović M, Bojičić RR, Ratković MC. Customer satisfaction with postal services in Serbia. Management: Journal of Sustainable Business and Management Solutions in Emerging Economies. 2018;23(3):15-33. DOI: 10.7595/management.fon.2018.0005.
  51. [51] Yaxu Y. Comprehensive evaluation of logistics enterprise competitiveness based on SEM model. Journal of Intelligent & Fuzzy Systems. 2021;40(4):6469-79. DOI: 10.3233/JIFS-189486.
  52. [52] Russo F, Comi A. A modelling system to simulate goods movements at an urban scale. Transportation. 2010;37:987-1009. DOI: 10.1007/s11116-010-9276-y.
  53. [53] de Araujo AC, Etemad A. End-to-end prediction of parcel delivery time with deep learning for smart-city applications. IEEE Internet of Things Journal. 2021;8(23):17043-56. DOI:10.48550/arXiv.2009.12197.
  54. [54] Kosovac A, Muharemović E, Begović M, Šimić E. Determining the location of postal centers in B&H using machine learning clustering method and GIS. In 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), 2020 Sep 28 (pp. 1318-1322). IEEE.
  55. [55] Wang Y, Ma X, Lao Y, Wang Y. A fuzzy-based customer clustering approach with hierarchical structure for logistics network optimization. Expert systems with applications. 2014;41(2):521-34. DOI: 10.1016/j.eswa.2013.07.078.
  56. [56] Gupta A, et al. Exploring relationships between service quality dimensions and customers satisfaction: empirical study in context to Indian logistics service providers. The international Journal of logistics management. 2023;34(6):1858-89. DOI: 10.1108/IJLM-02-2022-0084.
  57. [57] Masudin I, et al. Modified-Kansei engineering for the quality of logistics services during the Covid-19 pandemic: Evidence from Indonesia. Cogent Engineering. 2022;9(1):2064588. DOI: 10.1080/23311916.2022.2064588.
  58. [58] Tamayo S, Combes F, Gaudron A. Unsupervised machine learning to analyze city logistics through Twitter. Transportation Research Procedia. 2020;46:220-8. DOI: 10.1016/j.trpro.2020.03.184.
Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal