Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

Articles

Vol. 36 No. 2 (2024)
Published on 30.04.2024

Davor Sumpor, Sandro Tokić, Jasna Leder Horina, Mislav Stjepan Žebec
2024 (Vol 36), Issue 2

The paper presents a simpler and more precise model of lumbar moment prediction based on single linear, or multiple linear regression with two predictors. The body mass index (BMI) as the predictor contains two of the most important static anthropometric measures, height and mass, whose separated role in lumbar moment prediction, as well as their mutual relations, have not been sufficiently investigated. This study analysed mass, height, age and BMI as lumbar moment predictors, on a sample of 50 Croatian male engine drivers. Two prediction models were compared: (1) multiple linear regression prediction with mass and height as predictors; (2) single linear regression with mass as the only predictor. Results confirmed the multiple regression model as the best one (R2= 0.9015 with standard error of prediction 1.26), having the mass of the best predictor. Surprisingly, the single regression model with mass as predictor explained only 3.6% of lumbar moment variance less than multiple regression model, with related standard error of prediction 1.46 (mean percentage value of the relative error was only 0.8% higher than at multiple regression model). The obtained findings suggest high prediction potential of mass and height that should be verified on various subject samples.


Bowen Ma, Yuguang Wei, Bo Fang; Chunyi Li
2024 (Vol 36), Issue 2

This paper focuses on daily freight train scheduling and dynamic railcar routing problems for rail freight transportation at the operational level.  Two mixed integer linear programming models that adopted different strategies were formulated based on a continuous two-layer time-space network. We simultaneously considered the benefits of railroad company and service quality when setting the objective function. By solving the  models, we can distribute the dynamic railcar flows to the train paths in the basic train timetable to obtain the daily train operation plan over a short time horizon (e.g. a day), which will be helpful for dispatchers to make decisions such as the empty railcar distribution and car routing (trip planning). Finally, we compared two models on a part of the Chinese railroad network. The results show that the second model can effectively improve the efficiency of railroad freight transportation.


Zheng Lu, Pei Wang, Xiaodong Zhang
2024 (Vol 36), Issue 2

Logistics is playing a significant role in supporting economic growth and material security during the epidemic period and it has been  experiencing a rapid development in recent years. With the issues of personalisation and cost, the economy and society ask for higher requirements for logistics storage systems. The rational design of the functional area layout is an essential step to improve the operational efficiency of the logistics warehousing system. In reality, due to warehouse design and equipment application, there has been a gradual increase in irregular warehouses. By taking an irregular warehouse as an example, combining the operation status quo, this paper clarifies the functional area settings and constructs a 0–1 integer planning model based on the grid and systematic layout planning method with constraints, such as the unique functional attributes of the grid. We optimised the genetic algorithm based on the warehouse irregularity factor and the grids factor, and then solve it through MATLAB. Finally, by using the Flexsim software, simulation metrics were selected for evaluation, the method feasibility is verified.


Xuanming Ren, Xinmin Tang, Kang Zhang, Qixin Lu
2024 (Vol 36), Issue 2

Aiming at two aircraft conflict scenario in the pre-tactical stage, by converting the uncertain flight trajectory of the target aircraft into a spatio-temporal trajectory under its performance constraints, a conflict detection model based on truncated normal distribution was proposed,
and influencing factors affecting the overall conflict probability were analysed by numerical simulation. For the conflict scenario, nonlinear  particle swarm optimisation (NPSO) algorithm was applied to solve the optimal separation configuration strategy for the ownship. The simulation results show that, in comparison to conventional PSO algorithm, the improved NPSO algorithm improves the optimal value by 14.88% and decreases the maximum velocity change by 19.84%. The simulation also shows that the algorithm can maintain the minimum interval requirements under different initial parameters, demonstrating its strong adaptability.


Jie Li, Yuntao Shi, Shuqin Li
2024 (Vol 36), Issue 2

Traffic violations are a major cause of traffic accidents, yet current research falls short in comprehensively analysing these violations and the  named entity method fails to extract the name of traffic violation events from records, thereby lacking in providing guidance for managing urban traffic violations. By expanding the People’s Daily dataset from 71,456 words to 95,291 words, the BERT-CRF (Bidirectional Encoder Representations from Transformers-Conditional Random Field) model achieves an accuracy rate of 88.53%, a recall rate of 92.90% and an F1 score of 90.66%, successfully identifying event, time and location named entities within traffic violations. The data of traffic violations is then enhanced through forward geocoding and the Bayesian formula, and traffic violations are analysed from time, space, administrative region, gender and weather, to provide support for the dynamic allocation of law enforcement forces on traffic scenes and the precise management of
traffic violations.


Hongluan Zhao, Mengmeng Su
2024 (Vol 36), Issue 2

With the continuous increase of urban vehicles, traffic congestion becomes severe in the metropolitan areas and higher car utilisation areas. The traffic signal timing scheme can effectively alleviate traffic congestion at intersections. We need to make a profound study in the traffic signal timing. An optimisation model is established, which not only takes the average delay time of vehicles, the number of vehicle stops and the traffic capacity, but also takes the exhaust emissions as the evaluation indexes. The model is too complex and involves too many variables to be solved by using multi-objective programming. Thus, the Harris Hawks Optimisation (HHO) with few parameters and high search accuracy was used to solve the model. To avoid the disadvantages of poor search performance and easy to fall into local optimisation of the Harris Hawks Algorithm, multi-strategy improvements were introduced. The experimental effects show that during the peak hours of traffic flow, the improved algorithm can reduce the average vehicle delay by 36.7%, the exhaust emission by 31.2% and increase the vehicle capacity by 41.6%. The above indicators have also been upgraded during the low peak stage.


Ling Wang, Qi Wang
2024 (Vol 36), Issue 2

The transportation industry is a key area for ecological civilisation construction and low-carbon development. As the core support of the  national integrated transportation system, the ecological development level of integrated transportation hub (ITH) is crucial for enhancing 
the sustainable development capacity of the national integrated transportation. An eco-efficiency evaluation index system of ITH is established  in this study and the eco-efficiencies of twenty international ITHs in China are comprehensively evaluated based on the super-efficient epsilon-based measure (EBM) model. Then the panel Tobit regression model is adopted to analyse the influencing factors of eco-efficiency. The results  show that the average eco-efficiency of ITHs in China during 2011–2021 declines first and then rises, with a relatively high level overall but not efficient yet, and there is an obvious gradient distribution characteristic in all eco-efficiencies. Among them, Guangzhou ranks first, followed by  Haikou, and Harbin ranks last. It is found that integrated transportation efficiency, urban green coverage, level of opening-up and economic development improve eco-efficiency significantly, while urbanisation rate, industrial structure and technology input have a negative impact. The  results are consistent with the actual situation, verifying the practicality of models, and can be used to promote the sustainable development of integrated transportation.


Qinyu Wang, Weijie Yu, Wei Wang, Xuedong Hua
2024 (Vol 36), Issue 2

The current development of urban agglomeration greatly promotes the intercity connection and elevates the significance of intercity mobility system. However, intercity mobility often exhibits extreme spatiotemporal imbalances due to the diverse urban characteristics. This poses a huge challenge for traffic management and reveals the necessity on understanding the urban attractiveness for intercity mobility, which is represented as spatial interaction gravity in this study. While recent works have explored relevant aspects, they failed to provide insights into temporal variations in spatial interaction gravity or capture the determining factors from multiple perspectives. To fill this gap, this study proposed a two-phase framework to measure the urban spatial interaction gravity and developed determination approaches utilising the large-scale location-based services (LBS) dataset. Specifically, the inverse gravity model was adopted for the measure within multiple urban agglomerations and city sets during weekdays, weekends and holidays. Then, we developed the fitting equations of spatial interaction gravity by incorporating the correlated features associated with social, economic, network accessibility and land use. The findings present spatial interaction gravity across different periods and substantiate the distinct determination effects of features, with a high fitting accuracy. They provide promising supports for the intercity mobility prediction and pre-emptive traffic management.


Jinhui Li, Jiahao Sun, Weihang Wang
2024 (Vol 36), Issue 2

With the emergence of novel transportation trends, regular buses have experienced a significant decline in passenger numbers. Consequently, it becomes imperative to conduct studies on passengers’ intentions. This particular investigation employed a meticulously designed survey questionnaire to gather data, and developed a new model that integrates the theory of planned behaviour, technology acceptance model and expectation confirmation theory. The primary aim was to explore the key factors that influence residents’ ongoing behavioural intentions towards regular public bus travel. Furthermore, a gender-based multi-group analysis was conducted to investigate the impact mechanism of gender differences on ongoing behavioural intentions. The new model demonstrates various degrees of positive or negative influences among the variables, thereby confirming its universal applicability. Moreover, the multi-group analysis reveals that compared to gender, travel satisfaction has a stronger impact on women’s intentions, while travel attitude has a stronger impact on men’s intentions to travel by certain mean of transport. Simultaneously, perceived behavioural control does not significantly affect persistent intention for women but has a significant positive impact on persistent intention for men. Furthermore, perceived ease of use does not significantly impact perceived usefulness for women but has a significant positive effect on perceived usefulness for men. These research findings bear great significance in promoting environmentally-friendly travel practices.


Zsombor Szabó, Mária Szalmáné Csete, Tibor Sipos
2024 (Vol 36), Issue 2

The level of greenhouse gas emissions is one of the most important issues today, both professionally and politically, because a lower level of greenhouse gas emission is mandatory for a sustainable economy. Besides industry and households, the transport sector is also responsible for these emissions. For this reason, it may be essential to set up a model with which the amount of CO2 emissions could be estimated or predicted. This article presents a model that examines the extent of economic development and CO2 emissions in European countries. The result is establishing a pattern requiring a longer time series. If the pattern is proven, a clear reassessment of the current relationship between economic development and environmental protection should be made.


Roman Romanović, Kristina Samardžić, Doris Novak
2024 (Vol 36), Issue 2

Instrument flight procedures are essential and critical components of the global aviation system. They are designed for all phases of flight, i.e.  the standard instrument departures, standard instrument arrivals, instrument approaches and the en-route phase of flight. Instrument flight procedures are designed from various aeronautical data, information, dimensions, etc., which are named instrument flight procedure elements according to this paper. Development of air navigation systems affect design of instrument flight procedures and flexible use of airspace. The design process is carried out within a framework defined by international and national standards, organizational norms and economic aspects. Instrument flight procedure elements are a fundamental part of the process. Deviations of these elements from full compliance with international regulations can significantly and negatively affect air traffic safety. The objective of this paper was to investigate the basic prerequisites for statistical analysis of the design quality of instrument flight procedures, which have not been explored before. Six prerequisites were proposed for acquiring the data and preparing them for further statistical use.



Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal