In China and other developing countries, some bicycle riders exhibit retrograde behaviour, which affects the riding safety of normal cyclists. The effect of retrograde behaviour on visual search and cycling behaviours of normal cyclists is investigated and quantified in this study. First, cyclists are instructed to wear an SMI iView ETG head-mounted mobile eye tracker and a mobile phone equipped with a Global Positioning System real-time location monitoring function to cycle on a road to obtain the times of fixation, saccade and blink, as well as the pupil diameter, gaze position and velocity in normal and retrograde conditions. Subsequently, the effect of retrograde behaviour on the attention of normal cyclists is analysed using three indexes: proportion of fixation time, coefficient of variation of pupil diameter and area of interest. Then, the effect of cycling behaviour is analysed using three indexes: the cycling trajectory, the velocity at three stages and the coefficient of variation of velocity. Finally, polynomial regression analysis is performed to analyse the visual and cycling behaviour impact indexes under the retrograde condition. The results show that retrograde behaviour significantly affects the vision and cycling behaviour of normal cyclists and that the two indexes are positively correlated.
This study investigates the overtaking lane-changing (OLC) behaviour in expressway interchange weaving areas, aiming to analyse these behaviours’ causes and potential impacts. Field data are utilised to analyse the statistical characteristics of lane-changing points and spatio-temporal utilisation in weaving areas. A modified NS model, which considers the distribution pattern of vehicle speeds, and a rigid lane-changing rule based on Gaussian distribution are proposed. Additionally, a cellular automaton simulation model is constructed to quantify the influence of OLC behaviour on traffic efficiency and spatio-temporal utilisation based on simulated data. The findings indicate that the imbalanced distribution of lane-changing points and spatio-temporal utilisation in weaving segments, caused by rigid lane-changing behaviour, is an objective factor that triggers OLC behaviour. When the traffic volume in weaving areas ranges from 500 to 1,100 pcu/5 min and the proportion of OLC behaviour is between 0.35 and 0.7, the behaviour will significantly enhance the average vehicle speeds of the outermost lane of the main road and normal rigid lane-changing (NRLC) vehicles, with increases of up to 48% and 51%, respectively. Moreover, OLC behaviour also improves the balance of spatio-temporal utilisation in weaving areas and reduces the average spatio-temporal utilisation. This study clarifies the positive impact of OLC behaviour on expressway interchange weaving areas and provides new research ideas for enhancing the efficiency of these areas.
Low temperatures and icing in winter are significant factors that severely affect highway safety and traffic mobility. To enhance the precision and reliability of real-time winter road surface temperature (RST) prediction, a short-term prediction model is developed that harnesses both feature selection and deep learning. Leveraging meteorological data from a mountain highway in Yunnan, China, the key environmental variables affecting road surface temperature were first extracted using a random forest (RF) model for feature selection. These features were then combined with RST data to construct multiple groups of input variable combinations for the prediction model. A short-term prediction model with a 10-minute update frequency was built using a long short-term memory neural network (LSTM), namely RF-LSTM. The best input variable combination and preset parameters for the prediction model were determined through comparative testing with prevalent machine learning models, and the transferability of the prediction model was verified. The results showed that the best input variable combination for the RF-LSTM prediction model was road surface temperature and air temperature. The model recognised that the short-term RST was affected by long and short-term memory characteristics within a two-hour timeframe. When compared to the RF model, backpropagation (BP) neural network model and the standard LSTM model, the proposed model reduces prediction errors by 59.15%, 31.10% and 20.26%, respectively, while the prediction accuracy is 99.13% within an error margin of ±0.5℃. On the verification dataset, the proposed model maintains its time transferability with an average prediction absolute error of 0.0478. In all, the proposed model not only achieves a higher level of precision in real-time RST predictions but also ensures a more consistent and reliable performance under the challenging conditions of high altitude and mountainous terrain, offering enhanced support for traffic safety and road maintenance decision-making.
The concept of risk analysis is especially important because it examines and analyses in a detailed manner the factors that affect the normal functioning of a system. In this paper, the level crossing is considered as one system, composed of several elements. The failures of those elements were analysed with the aim of showing which are the most frequent and most critical failures. A multi-methodological approach was used in the analysis. The failure modes and effects analysis (FMEA) method was used to determine risk factors, after that a multi-criteria model was created in a fuzzy environment, and as output, it gave a ranking list of critical failures in the system. Through the discussion of the results, a comparison of the basic model with two other similar ones was made, and the comparative results were analysed. The main aim of this paper is to present one of the possible ways to analyse the risk of the system of level crossings with the aim of improving traffic safety at the crossing.
This study introduces an advanced software platform and process for the quantitative national economic evaluation of high-speed maglev systems, overcoming limitations of traditional methods through parameter variation experiments and automated solution search. Utilising the adapted German standardised evaluation, this research demonstrates how integrated modelling, evaluation and optimisation software can deeply analyse the impact of various variables and parameters on economic outcomes. By employing an optimisation algorithm, the software not only determines critical evaluation parameters to ensure benefits exceed costs but also deduces optimised model variables. The macroeconomic benefit-cost ratio guides the optimal design concept, with the research finding a critical value for ensuring economic feasibility. The proposed solution achieves a 22% improvement in this ratio (1.106 vs. 0.909) compared to the existing Hefei-Wuhu route, highlighting its potential for large-scale maglev implementation. Future development directions include integration with micro-simulation systems, support for random behaviour, sensitivity analysis, data-driven machine learning and enhanced user interface design for broader applicability. The findings underscore the software’s capability to provide robust, data-driven insights for economic feasibility studies of high-speed maglev systems, presenting a significant step forward in infrastructure project evaluation.
Traffic accidents are one of the main causes of fatalities and serious injuries among both adults and children worldwide. Due to the ongoing significant socio-economic losses brought on by traffic accidents, precise estimation of the risk of accidents is crucial to reducing subsequent incidents. For this reason, a significant proportion of the studies in the literature include studies on estimating the risk, severity, frequency, location and duration of accidents. The objective of this article is to identify patterns, gaps and future research trends in traffic accident prediction studies conducted between 2003 and 2023. A bibliometric study is carried out to investigate the links and trends in traffic accident and forecasting studies, with a focus on identifying dominant narratives and networks within the academic community. In the keyword search, 1,566 articles were analysed using the Web of Science main collection and bibliometric indicators such as annual publications and citations, top 10, authors, journals, institutions, most cited articles, and a citation analysis of the articles was presented. The results obtained suggest that the discernible patterns identified in this bibliometric analysis of traffic accidents and their predictions will find a much broader application in new paradigms that are ready to catalyse transformative advances in this field, such as artificial intelligence, machine learning and Industry 4.0 applications.
This study intended to explore college students’ cognition and attitudes towards connected and autonomous vehicles (CAVs) in China. A comprehensive questionnaire was designed and distributed in Mainland China, and after collecting and processing the data, Bayesian multivariate analysis was presented to evaluate the six dimensions of cognition, consciousness, safety, privacy, liability, education and acceptance. By analysing each dimension, the results show that gender and status are significant for consciousness, safety, privacy and education, but location plays a significant role in safety and liability. It is found that each dimension reveals a specific thought of college students, and the potential users’ cognition and attitude should be paid more attention to. Some empirical suggestions are presented to enhance the systematic improvement of CAVs and possible ethics issues.
Vehicle turn-in rate is a critical and widely adopted input for expressway rest area design and operation. With the implementation of expressway ETC gantries, the ERA turn-in rate can be further estimated by measuring the travel speed distribution via ETC gantry data. This paper proposed an adaptive density peak clustering Gaussian mixture model (ADPC-GMM) for ERA turn-in rate estimation. The ADPC algorithm is applied to generate the GMM’s inputs accommodating to the traffic characteristic of ERA expressway segments and GMM would further provide the turn-in rate estimation results. To validate the model precision, the turn-in rate data of four selected ERAs in Sichuan, China, as well as the ETC gantry data of their corresponding expressway sections are obtained. According to the estimation results, the MAE and RMSE are 0.0228 and 0.0267 for the passenger car scenario and 0.0264 and 0.0356 for the commercial truck scenario, respectively. These results are also at the lowest level compared with the results acquired from ordinary GMM, K-Means and DBSCAN algorithms. The proposed method has good applicability for vehicle turn-in rate estimation and can be deployed at different ERAs, especially those ERAs without traffic monitoring.
Vehicle trajectory prediction plays a critical role before the decision planning of autonomous vehicles in complex and dynamic traffic environments. It helps autonomous vehicles better understand the traffic environments and ensure safe and efficient tasks. In this study, a hierarchical trajectory prediction method is proposed. The graph attention network (GAT) model was selected to estimate the interactions of surrounding vehicles. Considering the behaviour of surrounding agents, the future trajectory of the target vehicle is predicted based on the long short-term memory network (LSTM). The model has been validated in real traffic environments. By comparing the accuracy and real-time performance of target vehicle trajectory prediction, the proposed model is superior to the traditional single trajectory prediction model. The results of this study will provide new modelling ideas and a theoretical basis for the vehicle trajectory prediction in urban traffic environments.
In urban networks, periodic peak traffic congestion often occurs during the day, namely in the morning and afternoon hours. Due to spatial constraints and the inability to increase capacity through physical road expansion, modern traffic management increasingly relies on Intelligent Transport Systems (ITS) solutions. One such solution is the integration of automatic licence plate recognition, an expert system and microsimulation tools aimed at optimising the network performance of signalised intersections within a network. Based on real-time and historical data on individual vehicle trajectories, the system predicts the route of each vehicle through the observed segment of the traffic network, determines the network load and proposes optimal signal plans. This paper provides an overview of conducted research related to the optimisation of signal plans utilising expert systems. Mathematical models for capacity and load determination, as well as computational intelligence-based systems used for signalised intersection management strategies, are described. Finally, the paper proposes a basic framework and guidelines related to the suggested system, highlighting open questions and potential challenges in its development.
Intelligent shipping is a crucial part of the transportation system, while inland river intelligent shipping is a major safeguard of intelligent transportation. Compared with the studies of mobile fading channels in land-based environments, less current research has focused on channel measurements and modeling for inland waterway bridge environments. In this paper, a segmenting radio channel model is proposed for inland highway and railway combined bridges. The ship's path under the bridge was divided into three phases, and the attenuation of signal strength was modelled separately for each. Hence, it shows ship-to-ship wireless channels in different areas and path loss on inland navigation bridges. A segmented model, instead of a basic path loss model, can accurately forecast path loss and provide a practical approach in ship-to-ship wireless channel transmission scenarios over bridges. Consequently, the channel measurements and modeling in the typical inland waterway are of great significance for establishing a reliable inland navigation broadband radio communication system.
Airport clusters are of great significance to the sustainable development of the civil aviation transportation industry. The study utilises common frontier and super-efficiency DEA methods to assess the efficiency of China’s six major airport groups. It then employs the Malmquist index method to analyse changes in airport productivity. The results highlight regional disparities in airport efficiency. The East China Airport Group and the Southwest Airport Group consistently demonstrate excellent efficiency values, while the North China Airport Group and the Northeast Airport Group have significant room for improvement. Most airports within the groups operate at low and ineffective levels, with efficiency initially increasing and then decreasing. Moreover, the technology gap ratio (TGR) for each airport group somewhat shows a downward trend. The Malmquist index indicates that the overall factor productivity of each airport has generally remained stable, with efficiency growth primarily dependent on scale efficiency. On average, technical efficiency has increased by 1.5%. However, in terms of technological changes, most airports have experienced technological regression, indicating insufficient focus on technological improvement. Therefore, it is crucial to prioritise technological innovation and enhance management efficiency to achieve efficiency improvements in airport clusters. It is necessary to formulate strategies accurately based on the specific conditions of different regions, promote coordinated development, foster regional exchanges and cooperation, address regional disparities, ensure sustainable development of China’s airport clusters, and establish a world-class airport cluster.
This study investigates the factors that drive users to sustain their usage of shared electric scooter (e-scooter) services in Taiwan, distinguishing itself from the conventional focus on predicting consumers’ initial adoption and behavioural intentions. It employs subjective rating questions, incorporating constructs related to user acceptance, attitudes and user experience (UX). Through hierarchical regression analysis of quantitative survey data, the study identifies key factors such as users’ modes of transportation, environmental attitudes, acceptance of shared services, attitudes towards private scooters, UX, total usage instances and age. However, reliance on private scooters as a mode of transportation and frequent usage of shared e-scooters negatively impact the sustained usage of these services. The research further highlights early development challenges in shared vehicle services, including concerns over personal data security, user-unfriendly system designs, lack of convenience, inadequate parking infrastructure and ineffective financial incentives. Based on these findings, the study provides recommendations for service providers and government entities to enhance service design and proactively address these challenges. Implementing these recommendations is expected to mitigate the impact of these challenges and potentially improve user acceptance, UX, and the overall sustainability of shared vehicle services.
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal