Vessels of the shipping industry produce sludge during the operation of the main engine, various types of auxiliary engines, and the handling of fuel oil on board ships. The sludge can be stored in special tanks and disposed of ashore or burned on board. In the European Union, according to the Port Reception Facilities Directive (EU) 2019/883, ships have to pay a port waste fee for the delivery of ship waste, which is calculated according to the size of the ship. Such an approach does not take into account the capacity of port green waste logistics. In this paper, the case of delivery of ship sludge to ports that are similar in terms of waste logistics capacity is analysed. It is presented as a mathematical game between ships and ports to improve green waste logistics and match the amount of oil sludge that can be discharged from ships to the capacity of ports. The goal of the game is to discourage free-riders, which can occur on both sides, between suppliers and ports. The waste rate can be used as a regulator and incentive that discourages sludge dumping when recycling is not feasible. A model evaluation is proposed using a numerical example.
With the increasing development and popularisation of information and communication technology, new challenges are posed to higher education in the modernisation of teaching in order to make education and training of students as effective as possible. It is therefore very important to develop and experiment with appropriate development tools, explore their benefits and effectiveness, and integrate them into existing learning strategies. The emergence of a computer-generated digital environment that can be directly experienced, actions that can determine what is happening in it, growth of technological characteristics, and decline in prices of virtual reality hardware leads to a situation that cannot be ignored. This paper investigated users' perceptions on the potential use of fully immersive virtual reality head-mounted displays in a discrete-event simulation of logistics processes. The dynamic nature of virtual environments requires active participation which causes greater engagement, motivation, and interest aided by interaction and challenges.
Based on an analysis of the developments to date, this article originates from and then substantiates long-discussed approaches of a fast, periodic unaccompanied combined rail freight transport network for Germany that corresponds to the target modal split. A four-stage scenario of a market entry is developed. The presented solution incorporates potentially novel aspects such as a network design based on the Deutschlandtakt Cargo integrated periodic timetable framework, the prospective quantity structures as of 2030, and a segmentation for a route-specific mix of two major shipping container types. The set of assessment indicators derived by the model allows to gain insights on the achievable capacities and service levels versus the addressable freight transport demand as well as consequential cost/benefit functions.
Road transport plays an essential role in freight transport throughout Europe, therefore, conditions that may hinder seamless operations in this sector require thorough consideration for evidence-based action. Critical amongst these key conditions is how, when, and where truck drivers stop, as a common set of rules strictly regulates their driving times and rest periods, which causes mandatory interruptions in the supply chains. However, approximating reliable estimations of freight traffic flows and road infrastructure usage constitutes a considerable challenge for researchers. This paper presents a robust data processing approach to designate rest area stops and to calculate the pertaining driving and rest times. Drawing on the abundance of navigation information provided by private fleet toll registration services, a comprehensive spatial-temporal truck stop database on all major rest areas along the toll road network in Hungary has been compiled. Based on the assessment and comparison of driving and rest times, driving and parking times have been analysed, including micro-scale analysis of particular rest areas. Both the methods applied and the results achieved can be of strategic interest to better understand truck driving patterns, as well as to develop targeted and cost-effective measures to streamline freight transport operations in other contexts.
The article analyses the issues concerning the reluctance of logistics professionals to adopt medium-sized electric trucks (ET) in the logistics system. Logistics trucks are oversized polluters, considered to be one of the hardest to be addressed for the reduction of CO2 emissions. It aims to identify the major barriers hindering the spread of ETs in logistics. The total cost of ownership (TCO) comparison between a traditional and electric truck has revealed the price gap at the end of a useful lifecycle is marginal. Incentivisation can bridge the gap. This research was based on a survey conducted among professionals from the logistics field in Budapest. Responses recorded were analysed by descriptive statistics to identify highly-rated barriers and their priorities. Based on the results, recommendations were suggested to facilitate the adoption of ETs.
The topic of the paper is the application of dual approach in formulation and resolution of goods distribution tasks problems. The gap in previous goods distribution research is the absence of the methodologies and goods transportation calculation methods for manufacturing companies with not too large amount of goods distribution whereby goods distribution is not the core activity. The goal of this paper is to find a solution for transportation in such companies. In such cases it is not rational to procure a specific software for the improvement of goods transportation but rather apply the calculation presented in this paper. The aim of this paper from mathematical aspect is to show the convenience of switching from the basic geometric interpretation of linear programming applied on transportation tasks to dual approach for the companies with too many costs limitations per transport task but not enough available transportation means. Recent research studies that use dual approach in linear programming are generally not applied to transportation tasks although such approach is very convenient. The goal of the paper is also to resolve transportation tasks by both primal and dual approach in order to prove the correctness of the method.
With the tendency of internationalisation and globalisation, signing regional economic agreements among multiple countries has become a trend. Under such an integration environment, some free economic zones with port transportation functions have become crucial for FDI (foreign direct investment) investors in selecting investment locations. The free trade port zone (FTPZ) is argued to be one of the most well-known. This paper aims to assess the FDI performance of FTPZs. On the basis of the FTPZ's features and relevant literature, assessment criteria (ACs) are initially identified. An evaluation model based on the fuzzy AHP (Analytic Hierarchy Process) approach is then introduced to evaluate the FTPZs' FDI performance from foreign investors' viewpoints. Finally, the FTPZ of the Kaohsiung port in Taiwan was empirically investigated to verify the assessment model. Results point out that for the FTPZ of Kaohsiung port, ACs with higher priorities needing improvement are raw material acquired, local government efficiency, and political stability and social security. Theoretical and practical recommendations for the FTPZ managers are discussed based on the results.
Management of heat stress and metabolic cost is vital for preventing any work-related disorders. In this paper, we integrated rest time formulations for heat strain and metabolic cost to develop a new lot sizing model for preventing heat exposure and work-related musculoskeletal disorders. The effects of heat strain and rest allowance on the total cost of the production supply process were investigated. The problem studied in this paper was the handling of the raw materials placed in boxes by manual material handling in order to supply the material requirement of a production line placed in a production area. For the realisation of the material handling transactions between the raw material warehouse and the production line, Electric Pallet Jack (EPJ) was used. The study covers the investigation of picking, storing, and carrying motions for the manual handling of these materials. The result of the analysis has shown that 8.5% savings were achieved by using the heat strain and rest time in comparison to the total cost of this part of the production line supply process with the ISO 7243 maximum metabolic work limit. Consequentially, the analysis results showed that the developed method demonstrated the viability of lot sizing model optimisation with multiple objectives and complex constraints with regards to the metabolic cost and heat strain.
In this COVID-19 epidemic, due to insufficient awareness of the impact of sudden public health emergencies on agricultural logistics at this stage, agricultural products were left unsold, stocks were backlogged, and losses were severe. In the process of distribution, we should not only ensure a short time cycle and avoid the contamination of agricultural products by foreign bacteria, but also pay attention to the waste of human, material, and financial resources. Therefore, this study mainly adopts the combination of the petrochemical network and block chain to build an agricultural products emergency logistics model. This paper first shows the operation mechanism of the petri dish network and blockchain coupling in the form of a graph and then uses the culture network modelling and simulation tool PIPE to directly verify the construction model. It is proved that the structure and overall business process of the agricultural products logistics system constructed by combining the Petri net and block chain are reasonable, reliable, and feasible in practical application and development. It is hoped that this study can provide a reference direction for agricultural emergency logistics.
Low-emission planning in freight transportation is one of the main levers to reduce greenhouse gas emissions. For a sustainable planning approach, a strategic solution for this planning problem is needed. Based on several literature reviews, a procedure model is developed, which is meant to be used for the development and adjustment of a low-emission transportation chain reference model. The procedure model consists of the decision steps needed to develop a low-emission transportation chain (LETC) reference model and it is structured into main decision processes and sub-decision processes. A first draft of the LETC-Model is presented in form of an ARIS-Express model.
To remain competitive and respond to rapidly changing markets, we need to increase flexibility in today's global marketplace. In this respect, the selection of the appropriate mode of transport is one of the most important functions to be performed by logistics. The selection of the appropriate mode of transport is a multi-criteria problem involving both quantitative and qualitative criteria. This paper deals with the selection of the mode of transport using the Analytic Hierarchy Process method (AHP). AHP is a method of decomposing a complex unstructured situation into simpler components to create a hierarchical system problem. This paper describes a general model of selection of transport mode using AHP including its application to a manufacturing company that selects the appropriate mode of transport from three potential transport modes. The aim of this paper is to create a useful decision support tool for selection of the transport mode using the AHP method within distribution logistics of motor fuels. This tool helps companies to make the right decision on the choice of transport mode by taking into account different importance of the different criteria that influence the decision-making process.
The article’s focus is on the postal services sector. The sector plays an important role in a process of delivering packages to the customers. Over the last few years, there has been a significant growth in volume of shipments transported. The aim of the article is to demonstrate the current development and subsequent prediction of two selected indicators that play an important role in the context of e-commerce development in the V4 states. One of the indicators is the number of shipments; the other is the indicator of CO2 emissions. While the values of the CO2 emission in the predictive analysis in comparison with the growing e-commerce turnover indicator stagnate, the number of shipments is growing alongside the e-commerce turnover values. In the light of these findings, it is clear that the growing number of shipments will result in the need to change the approach to the organisation of the parcel delivery process, especially in big cities and agglomerations. It is also necessary to mention that organisational changes in the parcel delivery process in big cities and agglomerations must be carried out in an environmentally friendly way.
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal