References
[1] Newman MEJ. The structure and function of complex networks. SIAM Review. 2003;45(2): 167-256. doi: 10.1137/S003614450342480.
[2] Boccaletti S, et al. Complex networks: Structure and dynamics. Physics Reports. 2006;424(4): 175-308. doi: 10.1016/j.physrep.2005.10.009.
[3] Derrible S, Kennedy C. Applications of graph theory and network science to transit network design. Transport Reviews. 2011;31(4): 495-519. doi: 10.1080/01441647.2010.543709.
[4] Lin J, Ban Y. Complex network topology of transportation systems. Transport Reviews. 2013;33(6): 658-685. doi: 10.1080/01441647.2013.848955.
[5] Xu M, et al. Discovery of critical nodes in road networks through mining from vehicle trajectories. IEEE Transactions on Intelligent Transportation Systems. 2018;20(2): 583-593. doi: 10.1109/TITS.2018.2817282.
[6] Kocur-Bera K. Scale-free network theory in studying the structure of the road network in poland. Promet – Traffic&Transportation. 2014;26(3): 235-242. doi: 10.7307/ptt.v26i3.1316.
[7] Calzada-Infante L, Adenso-Díaz B, Carbajal SG. Analysis of the European international railway network and passenger transfers. Chaos, Solitons & Fractals. 2020;141: 110357. doi: 10.1016/j.chaos.2020.110357.
[8] Wang W, et al. Analysis of the Chinese railway system as a complex network. Chaos, Solitons & Fractals. 2020;130: 109408. doi: 10.1016/j.chaos.2019.109408.
[9] Bombelli A, Santos BF, Tavasszy L. Analysis of the air cargo transport network using a complex network theory perspective. Transportation Research Part E: Logistics and Transportation Review. 2020;138: 101959. doi: 10.1016/j.tre.2020.101959.
[10] Verma T, Araújo NAM, Herrmann HJ. Revealing the structure of the world airline network. Scientific Reports. 2014;4: 5638. doi: 10.1038/srep05638.
[11] Gallotti R, Porter MA, Barthelemy M. Lost in transportation: Information measures and cognitive limits in multilayer navigation. Science Advances. 2016;2(2): e1500445. doi: 10.1126/sciadv.1500445.
[12] Yuan G, Kong DW, Sun LS, Luo W. Connectivity contribution to urban hub network based on super network theory–case study of Beijing. Promet – Traffic&Transportation. 2021;33(1): 35-47. doi: 10.7307/ptt.v33i1.3536.
[13] Wu J, Gao Z, Sun H, Huang H. Urban transit system as a scale-free network. Modern Physics Letters B. 2004;18(19n20): 1043-1049. doi: 10.1142/S021798490400758X.
[14] Louf R, Roth C, Barthelemy M. Scaling in transportation networks. PLoS One. 2014;9(7): e102007. doi: 10.1371/journal.pone.0102007.
[15] Latora V, Marchiori M. Is the Boston subway a small-world network?. Physica A: Statistical Mechanics and its Applications. 2002;314(1-4): 109-113. doi: 10.1016/S0378-4371(02)01089-0.
[16] Derrible S, Kennedy C. The complexity and robustness of metro networks. Physica A: Statistical Mechanics and its Applications. 2010;389(17): 3678-3691. doi: 10.1016/j.physa.2010.04.008.
[17] Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Review Letters. 2001;87(19): 198701. doi: 10.1103/PhysRevLett.87.198701.
[18] Ek B, VerSchneider C, Narayan DA. Efficiency of star-like graphs and the Atlanta subway network. Physica A: Statistical Mechanics and its Applications. 2013;392(21): 5481-5489. doi: 10.1016/j.physa.2013.06.055.
[19] Latora V, Marchiori M. Vulnerability and protection of infrastructure networks. Physical Review E. 2005;71(1): 015103. doi: 10.1103/PhysRevE.71.015103.
[20] Yang Y, et al. Robustness assessment of urban rail transit based on complex network theory: A case study of the Beijing Subway. Safety Science. 2015;79: 149-162. doi: 10.1016/j.ssci.2015.06.006.
[21] Roth C, Kang SM, Batty M, Barthelemy M. A long-time limit for world subway networks. Journal of The Royal Society Interface. 2012;9(75): 2540-2550. doi: 10.1098/rsif.2012.0259.
[22] Leng B, Zhao X, Xiong Z. Evaluating the evolution of subway networks: Evidence from Beijing subway network. Europhysics Letters. 2014;105(5): 58004. doi: 10.1209/0295-5075/105/58004.
[23] Freeman LC. Centrality in social networks conceptual clarification. Social Networks. 1978;1(3): 215-239. doi: 10.1016/0378-8733(78)90021-7.
[24] Wang J, Li C, Xia C. Improved centrality indicators to characterize the nodal spreading capability in complex networks. Applied Mathematics and Computation. 2018;334: 388-400. doi: 10.1016/j.amc.2018.04.028.
[25] Newman MEJ. A measure of betweenness centrality based on random walks. Social Networks. 2005;27(1): 39-54. doi: 10.1016/j.socnet.2004.11.009.
[26] Derrible S. Network centrality of metro systems. PLoS ONE. 2012;7(7): e40575. doi: 10.1371/journal.pone.0040575.
[27] Tang J, Li Z, Gao F, Zong F. Identifying critical metro stations in multiplex network based on DS D–S evidence theory. Physica A: Statistical Mechanics and its Applications. 2021;574: 126018. doi: 10.1016/j.physa.2021.126018.
[28] Kurant M, Thiran P. Layered complex networks. Physical Review Letters. 2006;96(13): 138701. doi: 10.1103/PhysRevLett.96.138701.
[29] Ramli MA, Monterola CP, Khoon GLK, Guang THG. A method to ascertain rapid transit systems’ throughput distribution using network analysis. Procedia Computer Science. 2014;29: 1621-1630. doi: 10.1016/j.procs.2014.05.147.
[30] Crucitti P, Latora V, Porta S. Centrality measures in spatial networks of urban streets. Physical Review E. 2006;73(3): 036125. doi: 10.1103/PhysRevE.73.036125.
[31] Liao C, Dai T, Zhao P, Ding T. Weighted centrality and retail store locations in Beijing, China: A temporal perspective from dynamic public transport flow networks. Applied Sciences. 2021;11(19): 9069. doi: 10.3390/app11199069.
[32] Wang Z, Li J, Huang L, Yang Z. Discovering the evolution of Beijing Rail Network in fifty years. Modern Physics Letters B. 2020;34(21): 2050212. doi: 10.1142/S0217984920502127.
[33] Xiao X, Jia L, Wang Y, Zhang C. Topological characteristics of metro networks based on transfer constraint. Physica A: Statistical Mechanics and its Applications. 2019;532: 121811. doi: 10.1016/j.physa.2019.121811.
[34] Cats O, Jenelius E. Dynamic vulnerability analysis of public transport networks: Mitigation effects of real-time information. Networks and Spatial Economics. 2014;14(3): 435-463. doi: 10.1007/s11067-014-9237-7.
[35] Luo D, Cats O, Lint HV. Can passenger flow distribution be estimated solely based on network properties in public transport systems?. Transportation. 2020;47(6): 2757-2776. doi: 10.1007/s11116-019-09990-w.
[36] Gao S, Wang Y, Gao Y, Liu Y. Understanding urban traffic-flow characteristics: A rethinking of betweenness centrality. Environment and Planning B: Planning and Design. 2013;40(1): 135-153. doi: 10.1068/b38141.
[37] Feng J, et al. Weighted complex network analysis of the Beijing subway system: Train and passenger flows. Physica A: Statistical Mechanics and its Applications. 2017;474: 213-223. doi: 10.1016/j.physa.2017.01.085.
[38] Soh H, et al. Weighted complex network analysis of travel routes on the Singapore public transportation system. Physica A: Statistical Mechanics and its Applications. 2010;389(24): 5852-5863. doi: 10.1016/j.physa.2010.08.015.
[39] Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human mobility patterns. Nature. 2008;453(7196): 779-782. doi: 10.1038/nature06958.
[40] Sun SW, Li HY, Xu XY. A key station identification method for urban rail transit: A case study of Beijing subway. Promet – Traffic&Transportation. 2017;29(3): 267-273. doi: 10.7307/ptt.v29i3.2133.
[41] Lee K, Jung WS, Park JS, Choi MY. Statistical analysis of the Metropolitan Seoul Subway system: Network structure and passenger flows. Physica A: Statistical Mechanics and its Applications. 2008;387(24): 6231-6234. doi: 10.1016/j.physa.2008.06.035.
[42] Sun L, Lee DH, Erath A, Huang X. Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 12 August 2012. 2012. p. 142-148.
[43] Hasan S, Schneider CM, Ukkusuri SV, Gonzalez MC. Spatiotemporal patterns of urban human mobility. Journal of Statistical Physics. 2013;151(1-2): 304-318. doi: 10.1007/s10955-012-0645-0.
[44] Roth C, Kang SM, Batty M, Barthelemy M. Structure of urban movements: Polycentric activity and entangled hierarchical flows. PLoS ONE. 2011;6(1): e15923. doi: 10.1371/journal.pone.0015923.
[45] Bonacich P, Lloyd P. Eigenvector-like measures of centrality for asymmetric relations. Social Networks. 2001;23(3): 191-201. doi: 10.1016/S0378-8733(01)00038-7.
[46] Opsahl T, Agneessens F, Skvoretz J. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks. 2010;32(3): 245-251. doi: 10.1016/j.socnet.2010.03.006.
[47] Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences. 2004;101(11): 3747-3752. doi: 10.1073/pnas.0400087101.
[48] Li C, Wang L, Sun S, Xia CY. Identification of influential spreaders based on classified neighbors in real-world complex networks. Applied Mathematics and Computation. 2018;320: 512-523. doi: 10.1016/j.amc.2017.10.001.
[49] Albert R, Albert I, Nakarado GL. Structural vulnerability of the North American power grid. Physical Review E. 2004; 69(2): 025103. doi: 10.1103/PhysRevE.69.025103.
[50] Huang A, et al. Cascading failures in weighted complex networks of transit systems based on coupled map lattices. Mathematical Problems in Engineering. 2015;940795. doi: 10.1155/2015/940795.