References
[1] Qiu XP, Yu D, Sun RX, Yang D. Cellular automata model based on safety distance. Journal of Transportation Systems Engineering and Information Technology. 2015;15: 54-60. doi: 10.16097/j.cnki.1009-6744.2015.02.009.
[2] Li X, Wu Q, Jiang R. Cellular automaton model considering the velocity effect of a car on the successive car. Physical Review E. 2001;64: 066128. doi: 10.1103/PhysRevE.64.066128.
[3] Wang H, Jin CJ. Traffic Flow Theory and Application. Beijing: China Communications Press; 2020.
[4] Kong DW, Sun LS, Li J, Xu Y. Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata. Physica A. 2021;562: 125329. doi: 10.1016/j.physa.2020.125329.
[5] Ye L, Yamamoto T. Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput. Physica A. 2018;512: 588-597. doi: 10.1016/j.physa.2018.08.083.
[6] Olia A, Razavi S, Abdulha B, Abdelgawad H. Traffic capacity implications of automated vehicles mixed with regular vehicles. Journal of Intelligent Transportation Systems. 2018;22: 244-262. doi: 10.1080/15472450.2017.1404680.
[7] Jian Z, Tie QT, Shao WY. An improved car-following model accounting for the preceding car’s taillight. Physica A. 2018;492: 1831-1837. doi: 10.1016/j.physa.2017.11.100.
[8] Shang XC, et al. Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior. Physica A. 2020;560: 125220. doi: 10.1016/j.physa.2020.125220.
[9] Bandini S, Mondini M, Vizzari G. Modelling negative interactions among pedestrians in high density situations. Transportation Research Part C. 2014;40: 251-270. doi: 10.1016/j.trc.2013.12.007.
[10] Jia B, Gao ZY, Li KP. Models and simulations of traffic system based on the theory of cellular automaton. Beijing: Science Press; 2007.
[11] Nagel K, Schreckenberg M. A cellular automaton model for freeway traffic. J. Phys. I France. 1992;2: 2221-2229. doi: 10.1051/jp1:1992277.
[12] Barlovic R, Santen L, Schadschneider A, Schreckenberg M. Metastable states in cellular automata for traffic flow. The European Physical Journal B. 1998;5: 793-800. doi: 10.1007/s100510050504.
[13] Kerner BS, Klenov SL, Wolf DE. Cellular automata approach to three-phase traffic theory. Journal of Physics A: Mathematical and General. 2002;35: 9971. doi: 10.1088/0305-4470/35/47/303.
[14] Li XB, Wu QS, Jiang R. Cellular automaton model considering the velocity effect of a car on the successive car. Physical Review E. 2001;64: 066128. doi: 10.1103/PhysRevE.64.066128.
[15] Knospe W, Santen L, Schadschneider A, Schreckenberg M. Towards a realistic microscopic description of highway traffic. Physica A. 2000;33: L477. doi: 10.1088/0305-4470/33/48/103.
[16] Jiang R, Wu QS. Cellular automata models for synchronized traffic flow. Journal of Physics A: Mathematical and General. 2003;36: 381. doi: 10.1088/0305-4470/36/2/307.
[17] Lee HK, Barlovic R, Schreckenberg M, Kim D. Mechanical restriction versus human overreaction triggering congested traffic states. Physical Review Letters. 2004;92: 238702. doi: 10.1103/PhysRevLett.92.238702.
[18] Lu B. Modeling and analysis of car-following behavior using data-driven methods. PhD thesis. Southwest Jiaotong University Chengdu; 2017.
[19] Guzman HA, Larraga ME, Alvarez-Icaza L, Carvajal J. A multi-gears cellular automata model for traffic flow based on kinetics theory. In: Proceedings of the 2017 International Conference on Applied Mathematics, Modeling and Simulation (AMMS 2017). 2017. p. 153-158. doi: 10.2991/amms-17.2017.35.
[20] Qiu XP, Ma LN, Zhou XX, Yang D. The mixed traffic flow of manual-automated driving based on safety distance. Journal of Transportation Systems Engineering and Information Technology. 2016;16: 101-108+124. doi: 10.16097/j.cnki.1009-6744.2016.04.015.
[21] Yang D, et al. A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect. Physica A. 2015;424: 62-72. doi: 10.1016/j.physa.2014.12.020.
[22] Larraga ME, Alvarez-Icaza L. Cellular automaton model for traffic flow based on safe driving policies and human reactions. Physica A. 2010;389: 5425-5438. doi: 10.1016/j.physa.2010.08.020.
[23] Larraga ME, Alvarez-Icaza L.Cellular automata model for traffic flow with safe driving conditions. Chinese Physics B. 2014;23: 050701. doi: 10.1088/1674-1056/23/5/050701.
[24] Li X, Li XG, Xiao Y, Bin J. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model. Physica A. 2016;451: 49-62. doi: 10.1016/j.physa.2015.12.157.
[25] Guzman HA, Larraga ME, Alvarez-Icaza L, Carvajal J. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions. Physica A. 2018;491: 528-548. doi: 10.1016/j.physa.2017.09.094.
[26] Kerner BS. Empirical macroscopic features of spatial-temporal traffic patterns at highway bottlenecks. Physical Review E. 2002;65: 046138. doi: 10.1103/PhysRevE.65.046138.
[27] Kerner BS, Klenov SL. Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Physical Review E. 2003;68: 036130. doi: 10.1103/PhysRevE.68.036130.
[28] Kerner BS. Three-phase traffic theory and highway capacity. Physica A. 2004;333: 379-440. doi: 10.1016/j.physa.2003.10.017.
[29] Huang YX. Experimental research and modeling on the evolution of traffic oscillation. PhD thesis. University of Science and Technology of China; 2019.
[30] Liu CC. Analysis of the evolution characteristics of traffic flow induced by moving bottleneck. MS thesis. Beijing Jiaotong University; 2018.