Traffic&Transportation Journal
Sign In / Sign Up


Overview of the Development of the Maritime Search and Rescue System in Croatia
Dario Medić, Anita Gudelj, Natalija Kavran
Keywords:search and rescue, accidents, response time, unmanned aerial vehicle (UAV)


According to the Convention for the Safety of Life at Sea and International Convention on Maritime Search and Rescue, saving human lives at sea is the duty of all signatory states. This paper analyzes and gives an overview of previous research activities in search and rescue system at sea and how the use of unmanned aerial vehicles (UAV) can improve search and rescue actions at sea. Research activities include development of the search system and placement of resources that are used in search and rescue actions (ships, planes etc.). Previous research is mainly related to minimizing response time when accidents at sea are detected in relation to search and rescue missions. Implementation of unmanned aerial vehicles into the search and rescue system enables improvement of these actions due to earlier detection and verification of accidents at sea and prevents unnecessary search and rescue units engagement in cases when an accident did not occur. The results of previous research point to the fact that future research should aim to explore the synthesis of unmanned aerial vehicles with the existing search and rescue system at sea in Croatia.


United Nations Convention on the Law of the Sea. London: United Nations; 1982.

Hrvatska. Kazneni zakon, pročišćeni tekst zakona, NN 125/11, 144/12, 56/15, 61/15. Zagreb; 2015. Available from: [Accesed 15th January 2017]

Convection of the High Sea. Geneva: United Nations; 1958.

International Convention for the Safety of Life at Sea (SOLAS), 1974. London: International Maritime Organization – IMO; 1997.

International Convention on Maritime Search and Rescue (SAR). Hamburg: International Maritime Organization; 1979.

Wang C. Principles and practices towards SAR [Search and Rescue] services: a comparative study on states approaches to improving maritime SAR [Master’s Thesis]. Malmö: Word Maritime University Dissertation; 2006.

Hrvatska. Ustroj službe traganja i spašavanja na moru Republike Hrvatske. Zagreb: Ministarstvo mora, prometa i infrastrukture; 2008. Available from: [Accesed 15th December 2016].

Hrvatska. Uredba o nazivima radnih mjesta i koeficijentima složenosti poslova u državnoj službi. Zagreb: Narodne novine; 2001. Available from: [pristupljeno: prosinac 2016]

Dundović K, Lazzo-Kurtin N, Colić K. Uloga i značaj nacionalne središnjice za usklađivanje traganja i spašavanja na moru. Rijeka: Zbornik Veleučilišta u Rijeci; 2015.

Hrvatska. Traganje i spašavanje. Zagreb: Ministarstvo mora, prometa i infrastrukture; 2008. Available from: [Accesed 15th January 2017]

Małyszko M, Wielgosz M. Decision support systems in search, rescue and salvage operations at sea. Szczecin: Scientific Journals Zeszyty Naukowe of the Maritime University of Szczecin. 2016; 45(117): p. 191-195. doi: 10,17402/105

Koopman B. Search and Screening, Report No.56 of the Operations Evaluation Group. Washington D.C.: Office of the Chief of Naval Operations; 1946.

Capar R. Traganje i spašavanje ljudi na moru. Rijeka: Fakultet za pomorstvo i saobraćaj; 1989.

Frost J K, Stone L D. Review of search Theory: Advance and Application to search and rescue decision support. Washington D.C.: U. S. Coast Guard Research and Development Centre; 2001.

Breivik O, Allen A A. An Operational Search and Rescue Model for the Norwegian Sea and the North Sea. New York: Cornell University, Journal of Marine Systems. 2011; 69(2): p. 99-113. doi: 10.1016/j.jmarsys.2007.02.010

Dominicis, M, Leuzzi G, Monti P Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dynamics. 2012; 62(9): p. 1381–1398. doi: 10.1007/s10236-012-0564-2

Coppini G, Jansen E, Turrisi G, et al. A new search-and-rescue service in the Mediterranean Sea: a demonstration of the operational capability and an evaluation of its performance using real case scenarios. Natural Hazards and Earth System Science. 2016; 16(12): p. 2713-2727. doi: 10.5194/nhess-16-2713-2016

Shchekinova EY, Kumkar Y, Coppini G. Numerical reconstruction of trajectory of small-size surface drifter in the Mediterranean Sea. Ocean Dynamics. 2016; 66(2): p. 153-161. doi: 10.1007/s10236-015-0916-9

Azofra M, Pérez-Labajos C A, Blanco B, et al. Optimum Placement of Sea Rescue Resources. Science Direct, Elsevier. 2007; 45(9): p. 941-951.

Pelot, R, Li L. Vessel Location Modelling for Maritime Search and Rescue. Applications of Location Analysis: International Series in Operations Research & Management Science, Springer. 2015; 232: p. 369-402.

Church R, ReVelle C R. Maximal Covering Location Problem. Regional Science, Wiley Online Library. 1974; 32(1): p. 101-118. doi: 10.1111/j.1435-5597.1974.tb00902.x

Venalainen E. Geographical Information Systems Supporting Maritime Search and Rescue Planning – Evaluating Voluntary Emergency Response in the Gulg of Finland [Master’s Thesis]. Helsinki: University of Helsinki; 2014.

Tudevdagva A. Unmanned Aerial Vehicle Based Automated Inspection System for High Voltage Transmission Lines. Automation and software engineering. 2017; 1(19): p. 28-32.

Máthé K, Busoniu L. Vision and control for UAVs: A survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors. 2015; 15(7): p. 14887-14916. doi:10.3390/s150714887

Chan B, Guan H, Hyung Jo J, Blumenstein M. Towards UAV-based bridge inspection systems: A review and an application perspective. Structural Monitoring and Maintenance. 2015; 2(3): p. 283-300. doi: 10.12989/smm.2015.2.3.283

Thamrin M N, Arshad HM, Adnan R. Simultaneous localization and mapping based real-time inter-row tree tracking technique for unmanned aerial vehicle. 2012 IEEE International Conference on Control System, Computing and Engineering; 2012 Nov 23-25; Penang, Malaysia. IEEE; 2013. doi: 10.1109/ICCSCE.2012. 6487164

Gruz G, Encarnação P. Obstacle avoidance for unmanned aerial vehicles. Journal of Intelligent & Robotic Systems. 2012; 65(1-4): p. 203–217. Available from: doi: 10846-011-9587-z

Witayangkurn A, Nagai M, Honda K, Dailey M. Shibasaki R. Real-time monitoring system using unmanned aerial vehicle integrated with sensor observation service. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2011; 28(1): p. 107-112. doi: 10.5194/isprsarchives-XXXVIII-1-C22-107-2011

Yeong SP, King LM, Dol SS. A review on marine search and rescue operations using unmanned aerial vehicles. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2015; 9(2): p. 396-399.

Waharte S, Trigoni N. Supporting search and rescue operation with UAVs. 2010 International Conference on Emerging Security Technologies; 2010 Sep 6-7; Canterbury, UK. IEEE; 2010. doi: 10.1109/EST.2010.31

Allison R, Hedrick JK. A Mode-Switching Path Planner for Uav-Assisted Search and Rescue. Proceedings of the 44th IEEE Conference on Decision and Control; 2005 Dec 15-15; Seville, Spain. IEEE; 2006. doi: 10.1109/CDC.2005. 1582366

Research project. Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). Royal Military Academy of Belgium - Unmanned Ground Vehicle Centre. Available from: [Accesed 15th January 2017]

Research project. Deployable SAR Integrated Chain with Unmanned Systems (DARIUS). Available from: [Accesed 15th January 2017]

Kaan O, Pushkin K. Incident Management in Intelligent Transport System. Las Vegas: Artech House Publishers; 1999.

Copyright (c) 2023 Dario Medić, Anita Gudelj, Natalija Kavran

Published by
University of Zagreb, Faculty of Transport and Traffic Sciences
Online ISSN
Print ISSN
SCImago Journal & Country Rank
Publons logo
© Traffic&Transportation Journal