References
[1] Bierstedt J, et al. Next-generation vehicles effects on travel demand and highway capacity. Fehr & Peers; 2014. https://issuu.com/fehrandpeers/docs/fp think next gen vehicle white paper final. [Accessed 20th Feb. 2023].
[2] Hancock PA, Nourbakhsh I, Stewart J. On the future of transportation in an era of automated and autonomous vehicles. Proceedings of the National Academy of Sciences. 2019;116(16):7684–7691. DOI: 10.1073/pnas.1805770115.
[3] Calvert SC, Schakel WJ, van Lint J. Will automated vehicles negatively impact traffic flow? Journal of Advanced Transportation. 2017;2017:3082781. DOI: 10.1155/2017/ 3082781.
[4] Tabone W et al. Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transportation Research Interdisciplinary Perspectives. 2021;9:100293. DOI: 10.1016/j.trip.2020.100293.
[5] SAE International. Surface Vehicle Recommended Practice J3016-201806. Taxonomy and definitions for terms related to driving automation systems for on- road motor vehicles. 2018. https://saemobilus.sae.org/content/J3016_202104/ [Accessed 20th Feb. 2023].
[6] Sukennik P. Micro-simulation guide for automated vehicles. CoEXist. Report Number: D2.5, 2018. https://www.h2020-coexist.eu/wp-content/uploads/2018/11/D2.5-Micro-simulation-guide-for-automated-vehicles.pdf [Accessed 20th Feb. 2023].
[7] TRB. Highway Capacity Manual. 6th ed. Washington: Transportation Research Board; 2016.
[8] Zhou J, Rilett L, Jones E. Estimating passenger car equivalent using the HCM-6 PCE methodology on four-lane level freeway segments in Western U.S. Transportation Research Record. 2019;2673(11):529–545. DOI: 10.1177/0361198119851448.
[9] Favero R, Setti JR. Evaluating the impacts of autonomous cars on the capacity of freeways in Brazil using the HCM-6 PCE methodology. Transportes. 2021;29(2):1–16. DOI: 10.14295/transportes.v29i2. 2444.
[10] Sparrow R, Howard M. When human beings are like drunk robots: Driverless vehicles, ethics, and the future of transport. Transportation Research Part C: Emerging Technologies. 2017;80:206–215. DOI: 10.1016/j.trc.2017.04.014.
[11] Shetty A, et al. Safety challenges for autonomous vehicles in the absence of connectivity. Transportation Research Part C: Emerging Technologies. 2021;128:103133. DOI: 10.1016/j.trc.2021.103133.
[12] Harper CD, et al. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly, and people with travel-restrictive medical conditions. Transportation Research Part C: Emerging Technologies. 2016;72:1–9. DOI: 10.1016/j.trc.2016.09.003.
[13] Van den Berg V, Verhoef E. Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity. Transportation Research Part B: Methodological. 2016;94:43–60. DOI: 10.1016/j.trb.2016.08.018.
[14] Alonso E, et al. Economic impact of autonomous vehicles in Spain. European Transport Research Review. 2020;12:59. DOI: 10.1186/S12544-020-00452-4.
[15] Chen Y, Gonder J, Young S, Wood E. Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach. Transportation Research Part A: Policy and Practice. 2019;122:134–145. DOI: 10.1016/j.tra.2017.10.012.
[16] Fountoulakis M, et al. Highway traffic state estimation with mixed connected and conventional vehicles: Microscopic simulation-based testing. Transportation Research Part C: Emerging Technologies. 2017;78:13–33. DOI: 10.1016/j.trc.2017.02.015.
[17] Yu H, et al. Automated vehicle-involved traffic flow studies: A survey of assumptions, models, speculations, and perspectives. Transportation Research Part C: Emerging Technologies. 2021;127:103101. DOI: 1016/j.trc.2021.103101.
[18] Olia A, Razavi S, Abdulhai B, Abdelgawad H. Traffic capacity implications of automated vehicles mixed with regular vehicles. Journal of Intelligent Transportation Systems. 2018;22(3):244–262. DOI: 10.1080/15472450.2017.1404680.
[19] Van Arem B, et al. The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Transactions on Intelligent Transportation Systems. 2006;7(4):429–436. DOI: 10.1109/TITS .2006.884615.
[20] Milanés V, et al. Cooperative adaptive cruise control in real traffic situations. IEEE Transactions on Intelligent Transportation Systems. 2014;15(1):296–305. DOI: 10.1109/TITS.2013.2278494.
[21] Shi L, Panos D. Autonomous and connected cars: HCM estimates for freeways with various market penetration rates. Transportation Research Procedia. 2016;15:389–402. DOI: 10.1016/j.trpro.2016.06.033.
[22] Adebisi A, et al. Developing highway capacity manual capacity adjustment factors for connected and automated traffic on freeway segments. Transportation Research Record. 2020;2674(10):401–415. DOI: 10.1177/0361198120934797.
[23] Adebisi A, et al. Highway capacity manual capacity adjustment factor development for connected and automated traffic at signalized intersections. Journal of Transportation Engineering, Part A: Systems. 2022;148(3):04021121. DOI: 10.1061/JTEPBS.0000631.
[24] List G, Yang B, Rouphail N. On the treatment of trucks for analysis of freeway capacity. Transportation Research Record. 2015;2483(1):120–129. DOI: 10.3141/2483-14.
[25] Sukennik, P. PTV Vissim extension: New features and improvements (Default behavioural parameter sets for AVs. CoEXist. Report number: D2.4, 2018. https://www.h2020-coexist.eu/wp-content/uploads/ 2018/10/D2.4-Vissim-extension-new-features-and-improvements_final.pdf [Accessed 20th Feb. 2023].
[26] Martin-Gasulla M, Sukennik P, Lohmille J. Investigation of the impact on throughput of connected autonomous vehicles with headway based on the leading vehicle type. Transportation Research Record. 2019;2673(5):617–626. DOI: 10.1177/0361198119839989.
[27] Bethonico F, Piva F, Setti JR. Calibration of traffic micro simulators through macroscopic measurements [Calibração de microssimuladores de tráfego através de medidas macroscópicas]. Anais do XXX Congresso de Pesquisa e Ensino em Transportes. Rio de Janeiro: ANPET; 2016. p. 1–12.
[28] Carvalho L, Setti JR. Calibration of the VISSIM truck performance model using GPS data. Transportes. 2019;27(3):31–143. DOI: 10.14295/transportes.v27i3.2042.
[29] Ma X. Using Classification and regression trees: A practical primer. Charlotte: IAP; 2018.
[30] Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Boca Raton: Chapman & Hall/CRC; 1984. DOI: 10.1201/9781315139470.
[31] De Oña J, de Oña R, Calvo F. A classification tree approach to identify key factors of transit service quality. Expert Systems with Applications. 2012;39(12):11164–11171. DOI: 10.1016/j.eswa.2012.03. 037.
[32] Chang L, Wang H. Analysis of traffic injury severity: An application of non-parametric classification tree techniques. Accident Analysis & Prevention. 2006;38(5):1019–1027. DOI: 10.1016/j.aap.2006.04.009.
[33] Abdullah P, Sipos T. Drivers’ behavior and traffic accident analysis using decision tree method. Sustainability. 2022;14(18):11339. DOI: 10.3390/su141811339.
[34] Pitombo C, Kawamoto E, Sousa, A. An exploratory analysis of relationships between socioeconomic, land use, activity participation variables and travel patterns. Transport Policy. 2011;18(2):347–357. DOI: 10.1016/j.tranpol.2010.10.010.
[35] [35] Caldas M, Pitombo C, Assirati L. Strategy to reduce the number of parameters to be estimated in discrete choice models: An approach to large choice sets. Travel Behaviour and Society. 2021;25:1–17. DOI: 10.1016/j.tbs.2021.05.001.
[36] Pitombo C, Souza A, Lindner A. Comparing decision tree algorithms to estimate intercity trip distribution. Transportation Research Part C: Emerging Technologies. 2017;77:16–32. DOI: 10.1016/j.trc.2017.01.009.
[37] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, inference, and prediction. 2nd edition. New York: Springer, 2009.
[38] Yang X-B, Zhang N. Effects of the number of lanes on highway capacity. In: Lan H, Yang Y (eds.) Proceedings of the 2007 International Conference on Management Science and Engineering, Harbin, China, 20-22 Aug. 2007. Harbin: Harbin Institute of Technology Press; 2007.p. 351–356. DOI: 10.1109/ICMSE.2007.4421872.