References
[1] I.E. Agency, CO2 Emissions from Fuel Combustion 2020. International Energy Agency, 2020. https://www.iea.org/reports/greenhouse-gas-emissions-from-energy-overview/data-explorer
[2] Lajunen A, Lipman T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy. 2016;106:329-342. DOI: 10.1016/j.energy.2016.03.075.
[3] Bi Z, et al. Plug-in vs. wireless charging: life cycle energy and greenhouse gas emission analysis of an electric bus system. Applied Energy. 2015;146:11-19. DOI: 10.1016/j.apenergy.2015.02.031.
[4] Bi Z, et al. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Applied Energy. 2016;179(oct.1):413-425. DOI: 10.1016/j.apenergy.2016.07.003.
[5] He Z. Battery electric bus selection based on entropy weight method and road operation test: Using Nanjing bus company as an example. Mathematical Problems in Engineering. 2022;2022:1696578. DOI: 10.1155/2022/1696578.
[6] Jeong S, Jang Y, Kum D. Economic analysis of the dynamic charging electric vehicle. IEEE Transactions on Power Electronics. 2015;30(11):6368-6377. DOI: 10.1109/TPEL.2015.2424712.
[7] Jang Y, Jeong S, Ko Y. System optimization of the on-line electric vehicle operating in a closed environment. Computers & Industrial Engineering. 2015;80:222-235. DOI: 10.1016/j.cie.2014.12.004.
[8] Liu Z, Song Z, Yi H. Optimal deployment of dynamic wireless charging facilities for an electric bus system. Transportation Research Record. 2017;2647(1):128-139. DOI: 10.3141/2647-12.
[9] Jang Y, Suh E, Kim J. System architecture and mathematical models of electric transit bus system utilizing wireless power transfer technology. IEEE Systems Journal. 2016;10(2):495-506. DOI: 10.1109/JSYST.2014.2369485.
[10] Liu Z, Song Z. Robust planning of dynamic wireless charging infrastructure for battery electric buses. Transportation Research Part C: Emerging Technologies. 2017;83:77-103. DOI: 10.1016/j.trc.2017.07.013.
[11] Mouhrim N, El Hilali Alaoui A, Boukachour J. Pareto efficient allocation of an in-motion wireless charging infrastructure for electric vehicles in a multipath network. International Journal of Sustainable Transportation. 2018;13(6):419-432. DOI: 10.1080/15568318.2018.1481242.
[12] Alwesabi Y, et al. Robust strategic planning of dynamic wireless charging infrastructure for electric buses. Applied Energy. 2021;307:118243. DOI: 10.1016/j.apenergy.2021.118243.
[13] Quadrifoglio L, Dessouky M, Ordónez F. A simulation study of demand responsive transit system design. Transportation Research Part A: Policy & Practice. 2008;42(4):718-737. DOI: 10.1016/j.tra.2008.01.018.
[14] Quadrifoglio L, Dessouky M, Ordónez F. Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints. European Journal of Operational Research. 2008;185(2):481-494. DOI: 10.1016/j.ejor.2006.12.030.
[15] Quadrifoglio L, Dessouky M, Palmer K. An insertion heuristic for scheduling Mobility Allowance Shuttle Transit (MAST) services. Journal of Scheduling. 2007;10(1):25-40. DOI: 10.1007/s10951-006-0324-6.
[16] Kim M, Schonfeld P. Conventional, flexible, and variable-type bus services. Journal of Transportation Engineering. 2012;138(3):263-273. DOI: 10.1061/(ASCE)TE.1943-5436.0000326.
[17] Kim M, Schonfeld P. Integration of conventional and flexible bus services with timed transfers. Transportation Research Part B: Methodological. 2014;68b(oct.):76-97. DOI: 10.1016/j.trb.2014.05.017.
[18] Kim M, Schonfeld P. Maximizing net benefits for conventional and flexible bus services. Transportation Research Part A: Policy & Practice. 2015;80A(OCT.): 116-133. DOI: 10.1016/j.tra.2015.07.016.
[19] Yu Y, Machemehl R, Xie C. Demand-responsive transit circulator service network design. Transportation Research Part E: Logistics and Transportation Review. 2015;76:160-175. DOI: 10.1016/j.tre.2015.02.009.
[20] Pan S, et al. Designing a flexible feeder transit system serving irregularly shaped and gated communities: Determining service area and feeder route planning. Journal of Urban Planning & Development. 2015;141(3):04014028.04014021-04014028.04014029. DOI: 10.1061/(ASCE)UP.1943-5444.0000224.
[21] Pei M, Lin P, Du J, Li X. Operational design for a real-time flexible transit system considering passenger demand and willingness to pay. IEEE Access. 2019;7:180305-180315. DOI: 10.1109/access.2019.2949246.
[22] Wang Y, et al. Optimizing centralized dispatching of flexible feeder transit considering transfer coordination with regular public transit. Mathematical Problems in Engineering. 2021;2021:6160321. DOI: 10.1155/2021/6160321.
[23] Cheng C, Wang T, Wang W, Ding J. Designing customised bus routes for urban commuters with the existence of multimodal network - A bi-level programming approach. Promet–Trafic&Transportation. 2022;34(3):487-498. DOI: 10.7307/ptt.v34i3.3980
[24] Wu M, et al. Joint optimization of timetabling, vehicle scheduling, and ride-matching in a flexible multi-type shuttle bus system. Transportation Research Part C: Emerging Technologies. 2022;139:103657. DOI: 10.1016/j.trc.2022.103657.
[25] Masmoudi M, et al. The dial-a-ride problem with electric vehicles and battery swapping stations. Transportation Research Part E: Logistics and Transportation Review. 2018;118:392–420. DOI: 10.1016/j.tre.2018.08.005.
[26] Bongiovanni C, Kaspi M, Geroliminis N. The electric autonomous dial-a-ride problem. Transportation Research Part B: Methodological. 2019;122:436-456. DOI: 10.1016/j.trb.2019.03.004.
[27] Li X, et al. Electric demand-responsive transit routing with opportunity charging strategy. Transportation Research Part D: Transport and Environment. 2022;110:103427. DOI: 10.1016/j.trd.2022.103427.
[28] Molenbruch Y, Braekers K, Eisenhandler O, Kaspi M. The electric dial-a-ride problem on a fixed circuit. Transportation Science. 2023;APR. DOI: 10.1287/trsc.2023.1208.
[29] Ko, Y, Jang, Y. The optimal system design of the online electric vehicle utilizing wireless power transmission technology. IEEE Transactions on intelligent transportation systems. 2013;14(3):1255-1265. DOI: 10.1109/TITS.2013.2259159.
[30] He Y, Song Z, Liu Z. Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities & Society. 2019;48:101530. DOI: 10.1016/j.scs.2019.101530.
[31] Chen G, Hu D, Chien S. Optimizing battery-electric-feeder service and wireless charging locations with nested genetic algorithm. IEEE Access. 2020;8:67166-67178. DOI: 10.1109/ACCESS.2020.2985168.
[32] Yıldırım Ş, Yıldız B. Electric bus fleet composition and scheduling. Transportation Research Part C: Emerging Technologies. 2021;129:103197. DOI: 10.1016/j.trc.2021.103197.
[33] Luo X, Fan W. Joint design of electric bus transit service and wireless charging facilities. Transportation Research Part E: Logistics & Transportation Review. 2023;174:103114. DOI: 10.1016/j.tre.2023.103114.
[34] Kirchler D, Wolfler Calvo R. A granular tabu search algorithm for the dial-a-ride problem. Transportation Research Part B: Methodological. 2013;56:120-135. DOI: 10.1016/j.trb.2013.07.014.
[35] Muelas S, Latorre A, Pena J. A variable neighborhood search algorithm for the optimization of a dial-a-ride problem in a large city. Expert Systems with Applications. 2013;40(14):5516-5531. DOI: 10.1016/j.eswa.2013.04.015.
[36] Masmoudi M, Braekers K, Masmoudi M, Dammak A. A hybrid genetic algorithm for the heterogeneous dial-aride problem. Computers & Operations Research. 2017;81(MAY):1-13. DOI: 10.1016/j.cor.2016.12.008.
[37] Felipe Á, Ortuno M, Righini G, Tirado G. A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics & Transportation Review. 2014;71:111-128. DOI: 10.1016/j.tre.2014.09.003.
[38] Goeke D, Schneider M. Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research. 2015;245(1):81-99. DOI: 10.1016/j.ejor.2015.01.049.
[39] Hiermann G, Puchinger J, Ropke S, Hartl R. The electric fleet size and mix vehicle routing problem with time windows and recharging stations. European Journal of Operational Research. 2016;252(3):995-1018. DOI: 10.1016/j.ejor.2016.01.038.
[40] Hof J, Schneider M, Goeke D. Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transportation Research Part B: Methodological. 2017;97(MAR):102-112. DOI: 10.1016/j.trb.2016.11.009.
[41] Pelletier S, Jabali O, Laporte G. The electric vehicle routing problem with energy consumption uncertainty. Transportation Research Part B: Methodological. 2019;126:225-255. DOI: 10.1016/j.trb.2019.06.006.
[42] Bac U, Erdem M. Optimization of electric vehicle recharge schedule and routing problem with time windows and partial recharge: A comparative study for an urban logistics fleet. Sustainable Cities and Society. 2021;70:102883. DOI: 10.1016/j.scs.2021.102883.
[43] Ma B, et al. The vehicle routing problem with speed optimization for shared autonomous electric vehicles service. Computers & Industrial Engineering. 2021;161:107614. DOI: 10.1016/j.cie.2021.107614.
[44] Ma B, et al. Time-dependent vehicle routing problem with departure time and speed optimization for shared autonomous electric vehicle service. Applied Mathematical Modelling. 2023;113:333-357. DOI: 10.1016/j.apm.2022.09.020.
[45] Bai Z, et al. A robust approach to integrated wireless charging infrastructure design and bus fleet size optimization. Computers & Industrial Engineering. 2022;168:108046. DOI: 10.1016/j.cie.2022.108046.
[46] Lu X, et al. Flexible feeder transit route design to enhance service accessibility in urban area. Journal of Advanced Transportation. 2016;50(4):507-521. DOI: 10.1002/atr.1357.
[47] Xiao M, Chien S, Hu D. Optimizing coordinated transfer with probabilistic vehicle arrivals and passengers’ walking time. Journal of Advanced Transportation. 2016;50(8):2306-2322. DOI: 10.1002/atr.1460.
[48] Winter K, Cats O, Correia G, Van Arem B. Designing an automated demand-responsive transport system: Fleet size and performance analysis for a campus–train station service. Transportation Research Record. 2016;2542(1):75-83. DOI:10.3141/2542-09.