References
[1] Prasetijo J, et al. Analysis of maximum weaving length and lane-changing rate for two-sided weaving section for federal road FT050 based on HCM 2010. International Journal of Integrated Engineering. 2018;10(2):56-60. DOI: 10.30880/ijie.2018.10.02.011.
[2] Zhao CW, et al. Choice of lane-changing point in an urban intertunnel weaving section based on random forest and support vector machine. Promet-Traffic & Transportation. 2023;35(2):161-174. DOI: 10.7307/ptt.v35i2.60.
[3] Liao YG, et al. Risk distribution characteristics and optimization of short weaving area for complex municipal interchanges. Journal of Advanced Transportation. 2021;2021:1-10. DOI: 10.1155/2021/5573335.
[4] Ma CX, et al. A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction. IEEE Transactions on Intelligent Transportation Systems. 2023;24(4):3728-3737. DOI: 10.1109/tits.2021.3117835.
[5] Vlahogianni EI, Karlaftis MG, Golias JC. Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C-Emerging Technologies. 2014;43:3-19. DOI: 10.1016/j.trc.2014.01.005.
[6] Lighthill MJ, Whitham GB. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences. 1955;229(1178):317-345. DOI: 10.1098/rspa.1955.0089.
[7] Jiang H, et al. Short-term speed prediction using remote microwave sensor data: Machine learning versus statistical model. Mathematical Problems in Engineering. 2016;2016:1-13. DOI: 10.1155/2016/9236156.
[8] Yang XX, et al. Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models. Journal of Advanced Transportation. 2020;2020:1-16. DOI: 10.1155/2020/9628957.
[9] Ye Q, Szeto WY,Wong SC. Short-term traffic speed forecasting based on data recorded at irregular intervals. IEEE Transactions on Intelligent Transportation Systems. 2012;13(4):1727-1737. DOI: 10.1109/tits.2012.2203122.
[10] Williams BM, et al. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation Engineering. 2003;129(6):664-672. DOI: 10.1061/(ASCE)0733-947X(2003)129:6(664).
[11] Qi Y, Ishak S. A hidden Markov model for short term prediction of traffic conditions on freeways. Transportation Research Part C-Emerging Technologies. 2014;43:95-111. DOI: 10.1016/j.trc.2014.02.007.
[12] Zhan AY, et al. A traffic flow forecasting method based on the GA-SVR. Journal of High Speed Networks. 2022;28(2):97-106. DOI: 10.3233/jhs-220682.
[13] Meng XW, et al. D-LSTM: Short-term road traffic speed prediction model based on GPS positioning data. IEEE Transactions on Intelligent Transportation Systems. 2022;23(3):2021-2030. DOI: 10.1109/tits.2020.3030546.
[14] Guo SN, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems. 2019;20(10):3913-3926. DOI: 10.1109/tits.2019.2906365.
[15] Yuan Y, et al. Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation. Transportation Research Part B-Methodological. 2021;146:88-110. DOI: 10.1016/j.trb.2021.02.007.
[16] Tian Y, Wei C, Xu D. Traffic flow prediction based on stack autoencoder and long short-term memory network. 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 20-22 November 2020, Shenyang, China. 2021. p. 385-388. DOI: 10.1109/AUTEEE50969.2020.9315723.
[17] Li LC, et al. Traffic speed prediction for intelligent transportation system based on a deep feature fusion model. Journal of Intelligent Transportation Systems. 2019;23(6):605-616. DOI: 10.1080/15472450.2019.1583965.
[18] Song ZG, et al. Short-term traffic speed prediction under different data collection time intervals using a SARIMASDGM hybrid prediction model. Plos One. 2019;14(6):1-19. DOI: 10.1371/journal.pone.0218626.
[19] Cao MM, Li V, Chan V. A CNN-LSTM model for traffic speed prediction. IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 25-28 May 2020, Antwerp, Belgium. 2020. p. 1-5. DOI: 10.1109/VTC2020 Spring48590.2020.9129440.
[20] Niu K, et al. A novel spatio-temporal model for city-scale traffic speed prediction. IEEE ACCESS. 2019;7:30050-30057. DOI: 10.1109/access.2019.2902185.
[21] Zhao YC, et al. Dynamic analysis of Kalman filter for traffic flow forecasting in sensor nets. Information Technology Journal. 2012;11(10):1508-1512. DOI: 10.3923/itj.2012.1508.1512.
[22] Guo JH, Huang W, Williams BM. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transportation Research Part C-Emerging Technologies. 2014;43:50-64. DOI: 10.1016/j.trc.2014.02.006.
[23] Cui Z, et al. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction. 2018:1-12. DOI: 10.48550/arXiv.1801.02143.
[24] Ahmed I, et al. Lane change rates at freeway weaving sites: Trends in HCM6 and from NGSIM trajectories. Transportation Research Record. 2019;2673(5):627-636. DOI: 10.1177/0361198119841281.
[25] Xu DZ, et al. Modeling framework for capacity analysis of freeway segments: Application to ramp weaves. Transportation Research Record. 2020;2674(1):148-159. DOI: 10.1177/0361198119900157.
[26] Sun J, Jiang JR, Zheng JX. Improved speed prediction models on weaving segments of urban expressway. China Journal of Highway and Transport. 2017;30(01):83-91. DOI: 10.19721/j.cnki.1001-7372.2017.01.011.
[27] Yu R, et al. Deep learning: A generic approach for extreme condition traffic forecasting. Proceedings of the 2017 SIAM International Conference on Data Mining. 2017. p. 777-785. DOI: 10.1137/1.9781611974973.87.
[28] Ma XL, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C-Emerging Technologies. 2015;54:187-197. DOI: 10.1016/j.trc.2015.03.014.
[29] Dai XY, et al. Deeptrend 2.0: A light-weighted multi-scale traffic prediction model using detrending. Transportation Research Part C-Emerging Technologies. 2019;103:142-157. DOI: 10.1016/j.trc.2019.03.022.
[30] Song C, et al. Traffic speed prediction under weekday using convolutional neural networks concepts. 28th IEEE Intelligent Vehicles Symposium (IV), 11-14 June 2017, Los Angeles, CA. 2017. p. 1293-1298. DOI: 10.1109/IVS.2017.7995890.
[31] Ma XL, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors. 2017;17(4):1-16. DOI: 10.3390/s17040818.
[32] Wang JY, et al. Traffic speed prediction and congestion source exploration: A deep learning method. 16th IEEE International Conference on Data Mining (ICDM), 12-15 December 2016, Barcelona, Spain. 2017. p. 499-508. DOI: 10.1109/icdm.2016.51.
[33] Ke RM, et al. Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact. Transportation Research Record. 2020;2674(4):459-470. DOI: 10.1177/0361198120911052.
[34] Fan Q, et al. Space-time hybrid model for short-time travel speed prediction. Discrete Dynamics in Nature and Society. 2018;2018:1-9. DOI: 10.1155/2018/7696592.
[35] Tan MC, Feng YB, Xu JM. Traffic flow prediction based on hybrid ARIMA and ANN model. China Journal of Highway and Transport. 2007;(4):118-121. DOI: 10.19721/j.cnki.1001-7372.2007.04.023.
[36] Wang HZ, et al. Empirical mode decomposition-autoregressive integrated moving average hybrid short-term traffic speed prediction model. Transportation Research Record. 2014;(2460):66-76. DOI: 10.3141/2460-08.
[37] Wang HZ, et al. A novel work zone short-term vehicle-type specific traffic speed prediction model through the hybrid EMD-ARIMA framework. Transportmetrica B-Transport Dynamics. 2016;4(3):159-186. DOI: 10.1080/21680566.2015.1060582.