References
[1] Paden B, et al. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles. 2016;1(1):33-55. DOI: 10.1109/TIV.2016.2578706.
[2] Vagale A, et al. Path planning and collision avoidance for autonomous surface vehicles I: A review. Journal of Marine Science and Technology. 2021;26(4):1292-1306. DOI: 10.1007/s00773-020-00787-6.
[3] Jeon G. A literature review of the path planning problem for unmanned aerial vehicle. Journal of the Military Operations Research Society of Korea. 2021;37(2):115-128.
[4] Chen ZZ, Xiao JZ, Wang GF. An effective path planning of intelligent mobile robot using improved genetic algorithm. Wireless Communications & Mobile Computing. 2022. DOI: 10.1155/2022/9590367.
[5] Maw AA, et al. IADA*: Improved anytime path planning and replanning algorithm for autonomous vehicle. Journal of Intelligent and Robotic Systems. 2020;100(3-4):1391-1405. DOI: 10.1177/09544070221088364.
[6] Yao TT, et al. Review of path planning for autonomous underwater vehicles. The 2019 International Conference On Robotics, Intelligent Control And Artificial Intelligence. 2019;482-487. DOI: 10.1145/3366194.3366280.
[7] Qin H, et al. Review of autonomous path planning algorithms for mobile robots. Drones. 2023;7(3). DOI: 10.3390/drones7030211.
[8] Lee SH, Chung CC. Autonomous-driving vehicle control with composite velocity profile planning. IEEE Transactions on Control Systems Technology. 2021;29(5):2079-2091. DOI: 10.1109/TCST.2020.3029713.
[9] Wang M, et al. Velocity planning method base on fuzzy neural network for autonomous vehicle. IEEE Access. 2021;9:19111-19126. DOI: 10.1109/ACCESS.2021.3054124.
[10] Wang M, et al. Improved genetic algorithms based on data-driven operators for path planning of unmanned surface vehicle. International Journal of Robotics & Automation. 2019;34(6):713-722. DOI: 10.2316/J.2019.206-0315.
[11] Maw AA, et al. IADA*: Improved anytime path planning and replanning algorithm for autonomous vehicle. Journal of Intelligent and Robotic Systems. 2020;100(3-4):1391-1405. DOI: 10.1177/09544070221088364.
[12] Gugan G, Haque A. Path planning for autonomous drones: Challenges and future directions. DRONES. 2023;7(3):169. DOI: 10.3390/drones7030169.
[13] Sun LY, et al. APF-bug-based intelligent path planning for autonomous vehicle with high precision in complex environment. International Journal of Robotics & Automation. 2023;38(4):277-283. DOI: 10.2316/J.2023.206-0741.
[14] Zhang YJ, et al. Optimal vehicle path planning using quadratic optimization for Baidu Apollo open platform. 2020 IEEE Intelligent Vehicles Symposium (IV). 2021;18(5). DOI: 10.1177/17298814211042730.
[15] Wu HX, et al. Research on vehicle obstacle avoidance path planning based on APF-PSO. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering. 2022;237(6):1391-1405. DOI: 10.1177/09544070221088364.
[16] Ji J, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology. 2017;66(2):952-964. DOI: 10.1109/TVT.2016.2555853.
[17] Duan YJ, et al. Active obstacle avoidance method of autonomous vehicle based on improved artificial potential field. International Journal of Advanced Robotic Systems. 2022;19(4). DOI: 10.1177/17298806221115984.
[18] Zheng L, et al. Bezier curve-based trajectory planning for autonomous vehicles with collision avoidance. IET Intelligent Transport Systems. 2020;14(13):1882-1893. DOI: 10.1049/iet-its.2020.0355.
[19] Yang WL, et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning. Applied Sciences-Basel. 2021;11(5). DOI: 10.3390/app11052114.
[20] Borges Lopes R, et al. A simple and effective evolutionary algorithm for the capacitated location–routing problem. Computers & Operations Research. 70(2016):155–162.
[21] Liu J, Lu Cao, Sun H. Improved genetic algorithm for fast path planning of USV. MIPPR 2015: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications. 2015; 9815:981529. DOI: 10.1117/12.2210736.
[22] Chen ZZ, Xiao JZ, Wang GF. An effective path planning of intelligent mobile robot using improved genetic algorithm, Wireless Communications and Mobile Computing, 2022;8. DOI: 10.1155/2022/9590367.
[23] Hou WB, et al. Enhanced ant colony algorithm with communication mechanism for mobile robot path planning. Robotics and Autonomous Systems, 2022;148:103949. DOI: 10.1016/j.robot.2021.103949.
[24] Liu JY, Wei XX, Huang HJ. An improved grey wolf optimization algorithm and its application in path planning. IEEE Access, 2021;9:121944 –121956. DOI: 10.1109/ACCESS.2021.3108973.
[25] Kumar S, Sikander A. Optimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programming. Arabian Journal for Science and Engineering, 2022;47(3):3519-3539. DOI: 10.1007/s13369-021-06326-8.
[26] Xu Xing, et al. Global path planning for mobile robots based on improved genetic algorithm. Computer Integrated Manufacturing System, 2022;28(6):1659-1672.
[27] Orozco-Rosas U, et al. Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing. 2019;77:235-251. DOI: 10.1016/j.asoc.2019.01.036.
[28] Zhu WW, et al. Local motion planning and tracking on autonomous driving vehicles. IEEE Chinese Automation Congress (CAC 2020). 2020;7679-7684. DOI: 10.1109/CAC51589.2020.9327148.
[29] Su SC, et al. Collaborative motion planning based on the improved ant colony algorithm for multiple autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems. 2023. DOI: 10.1109/TITS.2023.3250756.
[30] Shang EK, et al. An improved A-Star based path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic Systems. 2020;17(5). DOI: 10.1177/1729881420962263.
[31] Zhang J, et al. Autonomous land vehicle path planning algorithm based on improved heuristic function of A-Star. International Journal of Advanced Robotic Systems. 2021;18(5). DOI: 10.1177/17298814211042730.
[32] Zhu S, Aksun-Guvenc B. Trajectory planning of autonomous vehicles based on parameterized control optimization in dynamic on-road environments. Journal of Intelligent & Robotic Systems. 100(2020):1055-1067. DOI: 10.1007/s10846-020-01215-y.