References
[1] Federal Highway Administration. Traffic monitoring guide. Washington D.C, USA: U.S. Department of Transportation Federal Highway Administration; 2022. https://www.fhwa.dot.gov/policyinformation/tmguide/ [Accessed 18th June 2023].
[2] Kamouch A, Chaoub A, Guennoun Z. Mobile big data in vehicular networks: The road to internet of vehicles. In: Skourletopoulos G, et al. (eds.) Mobile big data. Lecture Notes on Data Engineering and Communications Technologies. Cham, Switzerland: Springer; 2018. p. 129-143. DOI: 10.1007/978-3-319-67925-9_6.
[3] Chan Y. Telecommunications-and information technology-inspired analyses: Review of an intelligent transportation systems experience. Transportation Research Record. 2017;2658(1):44-55. DOI: 10.3141/2658-06.
[4] Huang Y, et al. Spatiotemporal approach for evaluating the vehicle restriction policy with multi-sensor data. Transportation Research Record. 2022;2676(8):724-736. DOI: 10.1177/03611981221085518.
[5] Levenberg E, et al. Live road condition assessment with internal vehicle sensors. Transportation Research Record. 2021;2675(10):1442-1452. DOI: 10.1177/03611981211016852.
[6] Seedah DPK, Sankaran B, O’Brien WJ. Approach to classifying freight data elements across multiple data sources. Transportation Research Record. 2015;2529(1):56-65. DOI: 10.3141/2529-06.
[7] Robichaud K, Gordon M. Assessment of data-collection techniques for highway agencies. Transportation Research Record. 2003;1855(1):129-135. DOI: 10.3141/1855-16.
[8] Hasnat MM, Bardaka E. Distribution of highway infrastructure cost responsibility and revenue contribution shares among highway users in North Carolina: Present conditions and future alternatives. Transportation Research Record. 2023;2677(2):1082-1102. DOI: 10.1177/03611981221112403.
[9] Chen T, Ma J, Zhu Z, Guo X. Evaluation method for node importance of urban rail network considering traffic characteristics. Sustainability. 2023;15(4):3582. DOI: 10.3390/su15043582.
[10] Liu S, Gao H. The structure entropy-based node importance ranking method for graph data. Entropy. 2023;25(6):941. DOI: 10.3390/e25060941.
[11] Zhang Y, Lu Y, Yang G, Hang Z. Multi-attribute decision making method for node importance metric in complex network. Applied Sciences. 2022;12(4):1944-1944. DOI:10.3390/APP12041944.
[12] Sotoodeh H, Falahrad M. Relative degree structural hole centrality, CRD-SH: a new centrality measure in complex networks. Journal of Systems Science & Complexity. 2019;32(05):1306-1323. DOI: 10.1007/s11424-018-7331-5.
[13] Yu H, Cao X, Liu Z, Li Y. Identifying key nodes based on improved structural holes in complex networks. Physica A: Statistical Mechanics and its Applications. 2017;486(C):318-327. DOI: 10.1016/j.physa.2017.05.028.
[14] Çalık A, Erdebilli B, Özdemir YS. Novel integrated hybrid multi-criteria decision-making approach for logistics performance index. Transportation Research Record. 2023;2677(2):1392-1400. DOI: 10.1177/03611981221113314.
[15] Chen C, Zhang H. Evaluation of green development level of Mianyang agriculture, based on the entropy weight method. Sustainability. 2023;15(9):7589. DOI: 10.3390/SU15097589.
[16] Hanson-DeFusco J. What data counts in policymaking and programming evaluation-relevant data sources for triangulation according to main epistemologies and philosophies within social science. Evaluation and Program Planning. 2023;97(3):102238. DOI: 10.1016/j.evalprogplan.2023.102238.
[17] Park N, et al. Estimating node importance in knowledge graphs using graph neural networks. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 4-8 Aug. 2019, Anchorage, USA. 2019. p. 596-606. DOI: 10.1145/3292500.3330855.
[18] Narayan VV, et al. Evaluation of data sources and approaches for estimation of influenza-associated mortality in India. Influenza and Other Respiratory Viruses. 2018;12(1):72-80. DOI: 10.1111/irv.12493.
[19] Price C, Burley RA. An evaluation of information sources for current awareness on occupational diseases. Journal of Information Science. 1986;12(5):247-255. DOI: 10.1177/016555158601200504.
[20] Sorensen HT, Sabroe S, Olsen J. A framework for evaluation of secondary data sources for epidemiological research. International Journal of Epidemiology, 1996;25(2):435-442. DOI: 10.1093/ije/25.2.435.
[21] Hjørland B. Evaluation of an information source illustrated by a case study: effect of screening for breast cancer. JASIST. 2011;62(10):1892-1898. DOI: 10.1002/asi.21606.
[22] Hjørland B. Methods for evaluating information sources: an annotated catalogue. Journal of Information Science. 2012;38(3):258-268. DOI: 10.1177/0165551512439178.
[23] Kaufmann D, Kraay A, Mastruzzi M. The worldwide governance indicators: methodology and analytical issues. Hague Journal on the Rule of Law. 2010;3(2):220-246. DOI: 10.1017/S1876404511200046.
[24] Wood S, Regehr JD. Hierarchical methodology to evaluate the quality of disparate axle load data sources for pavement design. Journal of Traffic and Transportation Engineering (English Edition). 2022;9(2):261-279. DOI: 10.1016/J.JTTE.2021.02.005.
[25] Broach J, et al. Evaluating the potential of crowdsourced data to estimate network-wide bicycle volumes. Transportation Research Record. 2024;2678(3):573-589. DOI: 10.1177/03611981231182388.
[26] Jiang R, et al. Predicting bus travel time with hybrid incomplete data: A deep learning approach. Promet - Traffic & Transportation. 2022;34(5):673-685. DOI:10.7307/PTT.V34I5.4052.
[27] Yang L, Maria ST, Breitfuss G. Data sources in data driven circular business models. New Business Models Conference Proceedings 2023. 21-23 Jun 2023, Maastricht, Netherlands. 2023.. DOI: 10.26481/mup.2302.21.
[28] Khorashadizadeh H, Tiwari S, Groppe S. A survey on covid-19 knowledge graphs and their data sources. In: Mohanty SN, Diaz VG, Kumar GS. (eds.) Intelligent systems and machine learning. ICISML 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham, Switzerland: Springer; 2023. p. 142-152. DOI: 10.1007/978-3-031-35078-8_13.
[29] Wan H, et al. Research on ship relation graph analysis driven by multi-source data, 2021 6th International Conference on Transportation Information and Safety (ICTIS), 22-24 Oct. 2021, Wuhan, China. 2021. p. 655-660. DOI: 10.1109/ICTIS54573.2021.9798661.
[30] Kam KA, et al. Finding and exploring use of commodity-specific data sources for commodity flow modeling. Transportation Research Record. 2017;2646(1):77-83. DOI: 10.3141/2646-09.
[31] Nguyen K, Cao J. Top-K data source selection for keyword queries over multiple XML data sources. Journal of Information Science. 2012;38(2):156-175. DOI: 10.1177/0165551511435875.
[32] Tok AYC, et al. Online data repository for statewide freight planning and analysis. Transportation Research Record. 2011;2246(1):121-129. DOI: 10.3141/2246-15.
[33] Tijssen R, Raan TV, Heiser W, Wachmann L. Integrating multiple sources of information in literature-based maps of science. Journal of Information Science. 1990;16(4):217-227. DOI: 10.1177/016555159001600402.
[34] Wang W, et al. Factors affecting unmanned aerial vehicles’ unsafe behaviors and influence mechanism based on social network theory. Transportation Research Record. 2023;2677(5):1030-1045. DOI: 10.1177/03611981221138782.
[35] Batista NA, et al. Dealing with data from multiple web sources. WebMedia ‘18: Proceedings of the 24th Brazilian Symposium on Multimedia and the Web. 16-19 Oct. 2018, Salvador, Brazil. 2018. p. 3-6. DOI: 10.1145/3243082.3264609.
[36] Krogstie J. Evaluating data quality for integration of data sources. In: Grabis J, Kirikova M, Zdravkovic J, Stirna J. (eds.) The Practice of Enterprise Modeling. PoEM 2013. Lecture Notes in Business Information Processing. Berlin, Germany: Springer; 2013. p. 39-53. DOI: 10.1007/978-3-642-41641-5_4.