Snežana MLADENOVIĆ, Ivana STEFANOVIĆ, Slađana JANKOVIĆ, Ana UZELAC, Goran MARKOVIĆ, Stefan ZDRAVKOVIĆ
References
[1] Oki E. Linear programming and algorithms for communication networks: A practical guide to network design, control, and management. Broken Sound Parkway NW, USA: Taylor & Francis Group; 2013.
[2] Pioro M, Medhi D. Routing, flow, and capacity design in communication and computer networks. San Francisco, USA: Elsevier Inc; 2004.
[3] Medhi D, Ramasamy K. Network routing algorithms, protocols, and architectures. San Francisco, USA: Elsevier Inc; 2007.
[4] Resende M, Pardalos P. Handbook of optimization in telecommunications. Boston, MA, US: Springer; 2006.
[5] Salimifard K, Bigharaz S. The multicommodity network flow problem: State of the art classification, applications, and solution methods. Operational Research. 2022;22:1-47. DOI: 10.1007/s12351-020-00564-8.
[6] Eriskin L. A Lagrangean relaxation-based solution approach for multicommodity network design problem with capacity violations. Journal of Naval Sciences and Engineering. 2021;17(2):241-263. https://dergipark.org.tr/en/pub/jnse/issue/65720/932377.
[7] Tsai K, et al. Multi-commodity flow routing for large-scale leo satellite networks using deep reinforcement learning. Proceedings of the IEEE Wireless Communications and Networking Conference 2022, 10–13 April 2022, Austin, TX, USA. 2022. p. 626-631. DOI: 10.1109/WCNC51071.2022.9771734.
[8] Max-Onakpoya E, Baker CE. Assessing a synergistic use of alternate broadband delivery models in rural areas. Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) 2022, 21-25 March 2022, Pisa, Italy. 2022. p. 5-8. DOI: 10.1109/PerComWorkshops53856.2022.9767252.
[9] Kovács P. Minimum-cost flow algorithms: An experimental evaluation. Optimization Methods and Software. 2015;30(1):94-127. DOI: 10.1080/10556788.2014.895828.
[10] Chaturvedi A, et al. Improved throughput for all-or-nothing multicommodity flows with arbitrary demands. ACM SIGMETRICS Performance Evaluation Review. 2021;49(3):22-27. DOI: 10.1145/3529113.3529121.
[11] Dilpriya TAH, Lanel GHJ, Vidanage BVNC. A strategy to strengthen and enhance the telecommunication network in Sri Lanka by using concepts of graph theory and linear programming models. International Journal of Natural Sciences Research. 2022;10(1):1-20. DOI: 10.18488/63.v10i1.2913.
[12] Antić M. Optimization of non-blocking packet networks using the practical routing protocol with load balancing. PhD Thesis. University of Belgrade, School of Electrical Engineering; 2014.
[13] Khezri S, Khodayifar S. Joint chance-constrained multi-objective multi-commodity minimum cost network flow problem with copula theory. Computers & Operations Research. 2023;156(106260). DOI:10.1016/j.cor.2023.106260.
[14] Xu L, Haddad Vanier S. Branch-and-price for energy optimization in multi-hop wireless networks. Networks. 2022;80(1):123-148. DOI: 10.1002/net.22083.
[15] Fowler S, Li Y, Pollastro A, Napoli S. Simple network design and power allocation for 5g device-to-device communication. Proceedings of the IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 1-3 Dec. 2014, Athens, Greece. 2014. p. 203-207. DOI:10.1109/CAMAD.2014.7033235.
[16] Raayatpanah MA, et al. Design of survivable wireless backhaul networks with reliability considerations. Computers & Operations Research. 2023;151(106120). DOI: 10.1016/j.cor.2022.106120.
[17] IBM. IBM ILOG CPLEX Optimization studio CPLEX user’s manual. 2017;12(8). https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271_pdfs/usrcplex.pdf [Accessed 28th November 2022].
[18] Sifaleras A. Minimum cost network flow: Problems, algorithms, and software. Yugoslav Journal of Operation Research. 2013;23(1):3-17. DOI: 10.2298/YJOR121120001S.
[19] Eshtehadi R, Demir E, Huang Y. Solving the vehicle routing problem with multi-compartment vehicles for city logistics. Computers & Operations Research. 2020;115(104859). DOI: 10.1016/j.cor.2019.104859.
[20] Mladenović S, et al. Heuristic based real-time train rescheduling system. Networks. 2016;67(1):32-48. DOI: 10.1002/net.21625.
[21] Tran VM, Vu THN. Leveraging CPLEX to solve the vehicle routing problem with time windows. Proceedings of the 13th International Conference on Knowledge and Systems Engineering (KSE), 10-12 Nov. 2021, Bangkok, Thailand. 2021. p. 1-6. DOI: 10.1109/KSE53942.2021.9648591.
[22] Guo Y, Shahraki AA. Selection of rail station locations on an intercity route regarding maximum users’ economic profits. Promet – Traffic&Transportation. 2023;35(4):595-606. DOI: 10.7307/ptt.v35i4.241.
[23] Bugarčić P, Jevtić N, Malnar M. Reinforcement learning-based routing protocols in vehicular and flying ad hoc networks–a literature survey. Promet – Traffic&Transportation. 2022;34(6):893-906. DOI: 10.7307/ptt.v34i6.4159.
[24] Aktaş S, Alemdar H, Ergüt S. Towards 5G and beyond radio link diagnosis: Radio link failure prediction by using historical weather, link parameters. Computers and Electrical Engineering. 2022;99(107742). DOI: 10.1016/j.compeleceng.2022.107742.
[25] Patel S, Pathak H. A mathematical framework for link failure time estimation in MANETs. Engineering Science and Technology, an International Journal. 2022;25(100984). DOI: 10.1016/j.jestch.2021.04.003.
[26] Moshiri M, Safaei F, Samei Z. A novel recovery strategy based on link prediction and hyperbolic geometry of complex networks. Journal of Complex Networks. 2021;9(4):cnab007. DOI: 10.1093/comnet/cnab007.
[27] Bakhshi Kiadehi K, Rahmani AM, Sabbagh Molahosseini A. A fault-tolerant architecture for internet-of-things based on software-defined networks. Telecommunication Systems. 2021;77:155-169. DOI:10.1007/s11235-020-00750-1.
[28] Lagos C, at al. Combining tabu search and genetic algorithms to solve the capacitated multicommodity network flow problem. Studies in Informatics and Control. 2014;23(3):265-276. DOI: 10.24846/v23i3y201405.