References
[1] Wang J, Chen R, He Z. Traffic speed prediction for urban transportation network: A path based deep learning approach. Transportation Research Part C: Emerging Technologies. 2019;100:372-385. DOI: 10.1016/j.trc.2019.02.002.
[2] Chandra SR, Al-Deek H. Predictions of freeway traffic speeds and volumes using vector autoregressive models. Journal of Intelligent Transportation Systems. 2009;13(2):53-72. DOI: 10.1080/15472450902858368.
[3] Sun J, Sun J. A dynamic Bayesian network model for real-time crash predictions using traffic speed conditions data. Transportation Research Part C: Emerging Technologies. 2015;54:176-186. DOI: 10.1016/j.trc.2015.03.006.
[4] Wang H, et al. A novel work zone short-term vehicle-type specific traffic speed prediction model through the hybrid EMD-ARIMA framework. Transportmetrica B-Transport Dynamics. 2016;4(3):159-186. DOI: 10.1080/21680566.2015.1060582.
[5] Zhang W, et al. Speed prediction based on a traffic factor state network model. IEEE Transactions on Intelligent Transportation Systems. 2021;22(5):3112-3122. DOI: 10.1109/TITS.2020.2979924.
[6] Zeng C, Ma C, Wang K, Cui Z. Predicting vacant parking space availability: A DWT-Bi-LSTM model. Physica A: Statistical Mechanics and its Applications. 2022;599:127498. DOI: 10.1016/j.physa.2022.127498.
[7] Ma C, Zhao M. Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction. Physica A: Statistical Mechanics and its Applications. 2023;630:129355. DOI: 10.1016/j.physa.2023.129233.
[8] Asif MT, et al. Spatiotemporal patterns in large-scale traffic speed prediction, IEEE Transactions on Intelligent Transportation Systems. 2014;15(2):794-804. DOI: 10.1109/TITS.2013.2290285.
[9] Yao B, et al. Short-term traffic speed prediction for an urban corridor. Computer-aided Civil and Infrastructure Engineering. 2017;32(2):154-169. DOI: 10.1111/mice.12221.
[10] Tang J, et al. An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Transactions on Intelligent Transportation Systems. 2017;18(9):2340-2350. DOI: 10.1109/TITS.2016.2643005.
[11] Zang D, et al. Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network. IEEE Transactions on Intelligent Transportation Systems. 2019; 20(10):3700-3709. DOI: 10.1109/TITS.2018.2878068.
[12] Zheng L, Huang H, Zhu C, Zhang K. A tensor-based K-nearest neighbors method for traffic speed prediction under data missing. Transportmetrica B-Transport Dynamics. 2020;8(1):182-199. DOI: 10.1080/21680566.2020.1732247.
[13] Zhang K, Zheng L, Liu Z, Jia N. A deep learning based multitask model for network-wide traffic speed prediction. Neurocomputing. 2020;396:438-450. DOI: 10.1016/j.neucom.2018.10.097.
[14] Zhang Z, et al. Multistep speed prediction on traffic networks: A deep learning approach considering spatiotemporal dependencies. Transportation Research Part C: Emerging Technologies. 2019;105:297-322. DOI: 10.1016/j.trc.2019.05.039.
[15] Zheng G, Chai W, Katos, V. A dynamic spatial-temporal deep learning framework for traffic speed prediction on large-scale road networks. Expert Systems with Applications. 2022;195:116585. DOI: 10.1016/j.eswa.2022.116585.
[16] Ma C, et al. A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction. IEEE Transactions on Intelligent Transportation Systems. 2023;24(4):3728-3737. DOI: 10.1109/TITS.2021.3117835.
[17] Ma C., Zhao M. Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making. Physica A: Statistical Mechanics and its Applications. 2023;633:129355. DOI: 10.1016/j.physa.2023.129355.
[18] Ma X, et al. Long short-term memory network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies. 2015; 54:187-197. DOI: 10.1016/j.trc.2015.03.014.
[19] Jia Y, et al. Rainfall-integrated traffic speed prediction using deep learning method. IET Intelligent Transport Systems. 2017;11(9):531-536. DOI: 10.1049/iet-its.2016.0257.
[20] Gu Y, et al. Short-term prediction of lane-level traffic speeds: A fusion deep learning model. Transportation Research Part C: Emerging Technologies. 2019; 106:1-16. DOI: 10.1016/j.trc.2019.07.003.
[21] Hu H, Lin Z, Hu Q, Zhang Y. Attention mechanism with spatial-temporal joint model for traffic flow speed prediction. IEEE Transactions on Intelligent Transportation Systems. 2021;23(9):16612-16621. DOI: 10.1109/TITS.2021.3113935.
[22] Meng X, et al. D-LSTM: Short-term road traffic speed prediction model based on GPS positioning data. IEEE Transactions on Intelligent Transportation Systems. 2022;23(3):2021-2030. DOI: 10.1109/TITS.2020.3030546.
[23] Zeng C, Ma C, Wang K, Cui Z. Parking occupancy prediction method based on multi factors and stacked GRULSTM. IEEE Access. 2022;10:47361-47370. DOI: 10.1109/ACCESS.2022.3171330.
[24] Ma C, Dai G, Zhou J. Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method. IEEE Transactions on Intelligent Transportation Systems. 2022;23(6):5615-5624. DOI: 10.1109/TITS.2021.3055258.
[25] Lin L, et al. Road traffic speed prediction: A probabilistic model fusing multi-source data. IEEE Transactions on Knowledge and Data Engineering. 2018;30(7):1310-1323. DOI: 10.1109/TKDE.2017.2718525.
[26] Essien A, Petrounias I, Sampaio P, Sampaio S. Improving urban traffic speed prediction using data source fusion and deep learning. IEEE International Conference on Big Data and Smart Computing (BigComp) 2019, 27 Feb. 2019, Kyoto, Japan. 2019. p. 331-338. DOI: 10.1109/BIGCOMP.2019.8679231.
[27] Li L, et al. Traffic speed prediction for intelligent transportation system based on a deep feature fusion model. Journal of Intelligent Transportation Systems. 2019;23(6):605-616. DOI: 10.1080/15472450.2019.1583965.