Sign In / Sign Up

Editors Choice Papers

Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović
2020 (Vol 32), Issue 6

The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.

Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu
2021 (Vol 33), Issue 2

This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.

Pavle Bugarčić, Nenad Jevtić, Marija Malnar
2022 (Vol 34), Issue 6

Vehicular and flying ad hoc networks (VANETs and FANETs) are becoming increasingly important with the development of smart cities and intelligent transporta-tion systems (ITSs). The high mobility of nodes in these networks leads to frequent link breaks, which complicates the discovery of optimal route from source to destination and degrades network performance. One way to over-come this problem is to use machine learning (ML) in the routing process, and the most promising among different ML types is reinforcement learning (RL). Although there are several surveys on RL-based routing protocols for VANETs and FANETs, an important issue of integrating RL with well-established modern technologies, such as software-defined networking (SDN) or blockchain, has not been adequately addressed, especially when used in complex ITSs. In this paper, we focus on performing a comprehensive categorisation of RL-based routing pro-tocols for both network types, having in mind their simul-taneous use and the inclusion with other technologies. A detailed comparative analysis of protocols is carried out based on different factors that influence the reward func-tion in RL and the consequences they have on network performance. Also, the key advantages and limitations of RL-based routing are discussed in detail.

Published by
Online ISSN
Print ISSN
SCImago Journal & Country Rank
© Traffic and Transportation