References
[1] Ackerman E. Hail, robo-taxi! [top tech 2017]. IEEE Spectrum. 2017;54:26-29. DOI: 10.1109/MSPEC.2017.7802740.
[2] Rahimi A, et al. Potential implications of automated vehicle technologies on travel behavior: A literature review. International Conference on Transportation and Development 2020. 2020. p. 234-247. DOI: 10.1061/9780784483138.021.
[3] Bischoff J, Maciejewski M. Simulation of city-wide replacement of private cars with autonomous taxis in Berlin. Procedia Computer Science. 2016;83:237-244. DOI: 10.1016/j.procs.2016.04.121.
[4] Milakis D, Van Arem B, Van Wee B. Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems. 2017;21:324-348. DOI: 10.1080/15472450.2017.1291351.
[5] Gurumurthy KM, Kockelman KM. Analyzing the dynamic ride-sharing potential for shared autonomous vehicle fleets using cellphone data from Orlando, Florida. Computers, Environment and Urban Systems. 2018;71:177-185. DOI: 10.1016/j.compenvurbsys.2018.05.008.
[6] Nazari F, Noruzoliaee M, Mohammadian AK. Shared versus private mobility: Modeling public interest in autonomous vehicles accounting for latent attitudes. Transportation Research Part C: Emerging Technologies. 2018;97:456-477. DOI: 10.1016/j.trc.2018.11.005.
[7] Krueger R, Rashidi TH, Rose JM. Preferences for shared autonomous vehicles. Transportation Research Part C: Emerging Technologies. 2016;69:343-355. DOI: 10.1016/j.trc.2016.06.015.
[8] Bösch PM, et al. Cost-based analysis of autonomous mobility services. Transport Policy. 2018;64:76-91. DOI: 10.1016/j.tranpol.2017.09.005.
[9] Haboucha CJ, Ishaq R, Shiftan Y. User preferences regarding autonomous vehicles. Transportation Research Part C: Emerging Technologies. 2017;78:37-49. DOI: 10.1016/j.trc.2017.01.010.
[10] Bansal P, Kockelman KM, Singh A. Assessing public opinions of and interest in new vehicle technologies: An Austin perspective. Transportation Research Part C: Emerging Technologies. 2016;67:1-14. DOI: 10.1016/j.trc.2016.01.019.
[11] Maeng K, Cho Y. Who will want to use shared autonomous vehicle service and how much? A consumer experiment in South Korea. Travel Behaviour and Society. 2022;26:9-17. DOI: 10.1016/j.tbs.2021.08.001.
[12] Rahimi A, et al. Adoption and willingness to pay for autonomous vehicles: attitudes and latent classes. Transportation research part D: Transport and Environment. 2020;89:102611. DOI: 10.1016/j.trd.2020.102611.
[13] Etzioni S, et al. Preferences for shared automated vehicles: A hybrid latent class modeling approach. Transportation Research Part C: Emerging Technologies. 2021;125:103013. DOI: 10.1016/j.trc.2021.103013.
[14] Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly. 1989:319-340. DOI: 10.2307/249008.
[15] Han L, et al. The intention to adopt electric vehicles: Driven by functional and non-functional values. Transportation Research Part A: Policy and Practice. 2017;103:185-197. DOI: 10.1016/j.tra.2017.05.033.
[16] Jaiswal D, Deshmukh AK, Thaichon P. Who will adopt electric vehicles? Segmenting and exemplifying potential buyer heterogeneity and forthcoming research. Journal of Retailing and Consumer Services. 2022;67:102969. DOI: 10.1016/j.jretconser.2022.102969.
[17] Lanzini P, Khan SA. Shedding light on the psychological and behavioral determinants of travel mode choice: A meta-analysis. Transportation Research Part F: Traffic Psychology and Behaviour. 2017;48:13-27. DOI: 10.1016/j.trf.2017.04.020.
[18] Wang S, et al. Policy implications for promoting the adoption of electric vehicles: do consumer’s knowledge, perceived risk and financial incentive policy matter? Transportation Research Part A: Policy and Practice. 2018;117:58-69. DOI: 10.1016/j.tra.2018.08.014.
[19] Rahimi A, et al. Clustering approach toward large truck crash analysis. Transportation Research Record. 2019;2673:73-85. DOI: 10.1177/036119811983934.
[20] Magidson J, Vermunt J. Latent class models for clustering: A comparison with K-means. Canadian Journal of Marketing Research. 2002;20:36-43. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6add265688cde63766bed6b920c4546e7c11ab99.
[21] Train KE. Discrete choice methods with simulation. Cambridge University Press; 2009.
[22] Hensher DA, et al. Applied choice analysis: a primer. Cambridge University Press; 2005.
[23] Lubke G, Muthén BO. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling: A Multidisciplinary Journal. 2007;14:26-47. DOI: 10.1080/10705510709336735.
[24] Shah R, Goldstein SM. Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations management. 2006;24:148-169. DOI: 10.1016/j.jom.2005.05.001.
[25] Wang J, Wang X. Structural equation modeling: Applications using Mplus. John Wiley & Sons; 2019.
[26] Raykov T. Estimation of composite reliability for congeneric measures. Applied Psychological Measurement. 1997;21:173-184. DOI: 10.1177/01466216970212006.
[27] Ab Hamid M, Sami W, Sidek MM. Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series. 2017.p. 012163. DOI: 10.1088/1742-6596/890/1/012163.
[28] Zhang T, et al. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transportation research part C: Emerging Technologies. 2019;98:207-220. DOI: 10.1016/j.trc.2018.11.018.
[29] Liu J, et al. Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation. Transportation. 2017;44:1261-1278. DOI: 10.1007/s11116-017-9811-1.