Abstract
The paper deals with the traffic management of a traffic signal-controlled intersection. One set of movements consists ofall the possible streams at an intersection that occur simultaneously.The set of movements changes cyclically during thecontrol cycle. Within a cycle, each stream has to get at leastonce free passage, effective green time. Each set has to definethe traffic flow at the intersection with no crossing points(points of conflict). In the cyclical order of the set of movements,the intersection capacity is greater if the number of setswithin the cycle is lowe1; and 'overlapping' between the setsgreater. Using graph the01y, two intersections in the city ofZagreb have been analysed: Dubrovnik Avenue - VeeeslavaHoljevcaAvenue (6ltraffic accidents a year) and Savska Road- Street of the City of Vukovar (36 traffic accidents a year).References
Bazaraa, M.; Jarvis, J.; Sherali, H.: Linear programming
and network flows. New York, 1990.
Chvatal, V.: Linear programming. New York, 1983.
Cohen, S.: Operational research. New York, 1988.
Cvetkovic, D.; Milic, M.: Teorijagrafova i njene primene.
Naucna knjiga, Belgrad, 1977.
Gordon, G.; Pressman, 1.: Quantitative decision making
for business. London, 1983
Gordon, G.; Magnus, W.: Grupe i njihovi grafovi. Skolska
knjiga, Zagreb, 1975.
Kalpic, D.; Mornar, V.: Operacijska istraiivanja. Biblioteka
lnformacijsko drustvo, Zagreb, 1966.
Martie, Lj.: Matematicke metode za ekonomske analize
II. Zagreb, 1966.
Mesko, 1.: Graft in mreie. Maribor, 1975.
Mirkovic, D.: Matematicke metode u istraiivanjima optimalnih
rjdenja organizacijskih i ekonomskih problema.
Sarajevo, 1973.
Moder, J.; Elmaghraby, S.: Handbook of Opera/ions
Research Foundations and Fundamentals. New York,
Pasagic, H.: Matematicko modeliranje i teorija grafova.
FPZ Sveucilista u Zagrebu, Zagreb, 1998.
Veljan, D.: Kombinatorika s temijom grafova. Skolska
knjiga, Zagreb, 1989.